White etching cracking (WEC) is a subsurface bearing failure mechanism influenced by a number of factors, including lubricant composition. Certain metal-containing lubricants have been reported to promote WEC-induced failure; however, the exact mechanisms linking lubricant effects on WEC propensity are still not fully understood. An interesting field that has not been elucidated is the influence of additive concentration and tribofilm growth on WEC initiation, propagation, and failure. The investigations conducted in this work involved two series of oil formulations: one with additives that give rise to WEC (WEC oils) in different combinations and concentrations and another with additives that do not cause WEC (non-WEC oils). A mini traction machine (MTM) in combination with a spacer layer imaging machine (SLIM) was employed to study the growth of tribofilms and their influence on friction response. Insights from the MTM-SLIM study allowed for better interpretation of FE8 bearing tests. When using oils that contribute to WEC formation, the tribofilm-induced WEC mechanism was confirmed, with cracks initiating as early as after 20 h of FE8 testing. Metal-containing additives were found to favor the formation of WECs by generating a high-friction tribofilm and increasing the water content in the lubricant. Furthermore, the source of subsurface H associated with WEC failure is investigated using heavy water (D2O)-saturated oil. A mechanism of water dissociation induced in tribofilm growth (incubation period) is proposed in this article.
The tribological contact between raceways and rolling elements is essential for rolling bearing performance and lifetime. The geometrical description of these contacts is well known and can be used in several mechanical simulation tools. The material description, especially of the near-surface volume after interaction with lubricants, is not as simple. In particular, the Schaeffler FE8-25 test with cylindrical roller thrust bearings exhibits different failure modes depending on the lubricant chemistry. The main failure mechanisms of this test are sub-surface fatigue damage due to WECs (White Etching Cracks) and/or surface-induced fatigue damage (SIF). The harsh test conditions with mixed friction at high speeds and multiple slip conditions over the raceway width additionally provides different tribological conditions on a small area. This leads finally to the formation of certain tribological layers on the raceway because of the interaction of the surface with the lubricant chemistry under local frictional energies, which are worth investigating. The characterization of the layers was performed by the two less time-consuming, spatially resolved analysis methods of µXRF and ATR FTIR microscopy adapted by Schaeffler. This paper shows the results of this research and offers new approaches to optimizing rolling bearing testing and predicting the risk of early failures.
Abstract:In rare cases rolling bearings fail by WEC (white etching crack) damage before reaching their calculated rating life, if so called additional loads are applied on the bearing in addition to the normal Hertzian stress (p Hz ). A number of additional loads have been identified by means of tests with rolling bearings. These can be small direct currents as a result of electrostatic charge or large alternating currents from inverter-fed drives that unintentionally flow through the bearing. WEC damages can also be initiated by a pure mechanical additional load which is dependent on factors including the bearing kinematics but also on the dynamics of the drive train. The current state of knowledge on this subject is presented and taken as the basis for developing a hypothesis on the WEC damage mechanism. If load situations critical for WEC cannot be avoided, the risk of WEC can be considerably reduced by the selection of suitable materials and coatings as well as, in some cases, of suitable lubricants.
Synthetic esters are used as lubricants for applications at high temperatures, but their development can be a trial and error process. In this context, molecular dynamics simulations could be used as a tool to investigate the properties of new lubricants, in particular viscosity. We employ nonequilibrium molecular dynamics (NEMD) simulations to predict bulk Newtonian viscosities of a set of mixtures of two esters, di(2ethylhexyl) sebacate (DEHS) and di(2-ethylhexyl) adipate (DEHA) at 293 and 343 K as well as equilibrium molecular dynamics (EMD) and NEMD at 393 K and compare these to experimental measurements. The simulations predict mixture densities within 5% of the experimental values, and we are able to retrieve between 99% and 75% of the experimental viscosities for all ranges of temperature. Experimental viscosities show a linear trend which we are able to capture using NEMD at low temperature and EMD at high temperature. Our work shows that, using EMD and NEMD simulations, and the workflows we developed, we can obtain reliable estimates of the viscosities of mixtures of industrially relevant ester-based lubricants at different temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.