Abstract-Radio Tomographic Imaging (RTI) is an emerging technology for imaging the attenuation caused by physical objects in wireless networks. This paper presents a linear model for using received signal strength (RSS) measurements to obtain images of moving objects. Noise models are investigated based on real measurements of a deployed RTI system. Mean-squared error (MSE) bounds on image accuracy are derived, which are used to calculate the accuracy of an RTI system for a given node geometry. The ill-posedness of RTI is discussed, and Tikhonov regularization is used to derive an image estimator. Experimental results of an RTI experiment with 28 nodes deployed around a 441 square foot area are presented.
This paper presents a new method for imaging, localizing, and tracking motion behind walls in real-time. The method takes advantage of the motion-induced variance of received signal strength measurements made in a wireless peerto-peer network. Using a multipath channel model, we show that the signal strength on a wireless link is largely dependent on the power contained in multipath components that travel through space containing moving objects. A statistical model relating variance to spatial locations of movement is presented and used as a framework for the estimation of a motion image. From the motion image, the Kalman filter is applied to recursively track the coordinates of a moving target. Experimental results for a 34-node through-wall imaging and tracking system over a 780 square foot area are presented.
Abstract-We discuss the emerging application of device-free localization using wireless sensor networks, which find people and objects in the environment in which the network is deployed, even in buildings and through walls. These networks are termed "RF sensor networks" because the wireless network itself is the sensor, using RF signals to probe the deployment area. Devicefree localization in cluttered multipath environments has been shown to be feasible, and in fact benefits from rich multipath channels. We describe modalities of measurements made by RF sensors, the statistical models which relate a person's position to channel measurements, and describe research progress in this area.
Abstract-Device-free localization (DFL) is the estimation of the position of a person or object that does not carry any electronic device or tag. Existing model-based methods for DFL from RSS measurements are unable to locate stationary people in heavily obstructed environments. This paper introduces measurement-based statistical models that can be used to estimate the locations of both moving and stationary people using received signal strength (RSS) measurements in wireless networks. A key observation is that the statistics of RSS during human motion are strongly dependent on the RSS "fade level" during no motion. We define fade level and demonstrate, using extensive experimental data, that changes in signal strength measurements due to human motion can be modeled by the skew-Laplace distribution, with parameters dependent on the position of person and the fade level. Using the fade-level skewLaplace model, we apply a particle filter to experimentally estimate the location of moving and stationary people in very different environments without changing the model parameters. We also show the ability to track more than one person with the model.
Abstract-This paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be used to reliably detect human breathing and estimate the breathing rate, an application we call "BreathTaking". We show that although an individual link cannot reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing. We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30 seconds of data, within 0.3 breaths per minute (bpm) RMS error. Use of directional antennas is shown to improve robustness to motion near the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.