This paper reports on how the trade-off between the incident solar irradiance and conversion efficiency of a photovoltaic panel affects its power production. A neural network was developed through statistical analysis and a data-driven approach to accurately calculate the photovoltaic panel’s power output. Although the incident beam irradiance at a specified location directly relates to the tilt angle, the diffusion irradiance and energy conversion efficiency are nonlinearly dependent on a number of operating parameters, including cell temperature, wind speed, humidity, etc. A mathematical model was implemented to examine and cross-validate the physics of the neural network. Through simulation and comparison of the optimized results for different time horizons, it was found that hourly optimization can increase the energy generated from the photovoltaic panel by up to 42.07%. Additionally, compared to the base scenario, annually, monthly, and hourly optimization can result in 9.7%, 12.74%, and 24.78% more power, respectively. This study confirms the data-driven approach is an effective tool for optimizing solar power. It recommends adjusting the tilt angle of photovoltaic panels hourly, during the daily operation of maximizing the energy output and reducing solar costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.