The extensive melting of Arctic sea ice driven by climate change provides opportunities for commercial shipping due to shorter travel distances of up to 40% between Asia and Europe. It has been estimated that around 5% of the world's trade could be shipped through the Northern Sea Route (NSR) in the Arctic alone under year-round and unhampered navigability, generating additional income for many European and East Asian countries. Our analysis shows that for Arctic sea ice conditions under the RCP8.5 emissions scenario and business restrictions facing shipping companies, NSR traffic will increase steadily from the mid-2030s onwards, although it will take over a century to reach the full capacity expected for ice-free conditions. However, in order to achieve a balanced view of Arctic shipping, it is important to include its detrimental environmental impacts, most notably emissions of short-lived pollutants such as black carbon, as well as CO 2 and non-CO 2 emissions associated with the additional economic growth enabled by NSR. The total climate feedback of NSR could contribute 0.05% (0.04%) to global mean temperature rise by 2100 under RCP8.5 (RCP4.5), adding $2.15 trillion ($0.44 trillion) to the NPV of total impacts of climate change over the period until 2200 for the SSP2 socio-economic scenario. The climatic losses offset 33% (24.7%) of the total economic gains from NSR under RCP8.5 (RCP4.5), with the biggest losses set to occur in Africa and India. These findings call for policy instruments aimed at reducing emissions from Arctic shipping and providing compensation to the affected regions.Climatic Change (2017) 143:143-155 DOI 10.1007/s10584-017-1980 Dmitry Yumashev and Karel van Hussen are joint first authors.Electronic supplementary material The online version of this article
This paper discusses the use of scenarios in the 'Blue Growth' project, which was aimed at elaborating the maritime dimension of the Europe 2020 strategy, with a 15year time horizon (2025/2030). Scenarios were understood and developed in two ways: as descriptions of plausible, desirable and realistic future developments (the 'micro-future scenarios') and as a means to foster uncertainty awareness (the 'general scenarios'). The general scenarios were developed as a scenario matrix, following Van der Heijden (1996). The micro-futures were developed following the approach proposed by Miller (Futures 39:341-362, 2007). The direct impact of the general scenarios on policy development cannot yet be evaluated. The micro-futures, being relatively concrete, were very useful to trigger discussions. In addition, the evaluation of the micro-futures in the light of the general scenarios led to some valuable insights. Within the Blue Growth project, the use of this hybrid approach has led to an active involvement of stakeholders, generating energy in the process of defining a desirable future, while taking account of uncertainties in the developments in global development.
A growing concern about the health of the world\ud oceans resulting from multiple stressors as for instance effects of\ud climate change and increasing offshore activities leads to the need\ud of better observational tools and strategies. The objective of the\ud NeXOS project is to serve those needs by developing new costeffective,\ud innovative and compact integrated multifunctional\ud sensor systems for ocean optics, ocean passive acoustics, and an\ud Ecosystem Approach to Fisheries (EAF), which can be deployed\ud from mobile and fixed ocean observing platforms, as well as to\ud develop downstream services for the Global Ocean Observing\ud System, Good Environmental Status of European marine waters\ud and the Common Fisheries Policy.Peer ReviewedPostprint (published version
The NeXOS project aims to develop new multifunctional sensor systems supporting a number of scientific, technical and societal objectives, ranging from more precise monitoring and modelling of the marine environment to an improved management of fisheries. Several sensors will be developed, based on optical and passive acoustics technologies, addressing key environmental descriptors identified by the European Marine Strategy Framework Directive (MSFD) for Good Environmental Status (GES). Two of the new sensors will also contribute to the European Union Common Fisheries Policy (CFP), with a focus on variables of interest to an Ecosystem Approach to Fisheries (EAF). An objective is the improved cost-efficiency, from procurement to operations, via the implementation of several innovations, such as multiplatform integration, greater reliability through better antifouling management, greater sensor and data interoperability and the creation of market opportunities for European enterprises. Requirements will be further analysed for each new sensor system during the first phase of the project. Those will then be translated into engineering specifications, leading to the development phase. Sensors will then be tested, calibrated, integrated on several platform types, scientifically validated and demonstrated in the field. Translation to production and broad adoption are facilitated by participating industry. Overall, the paper presents an overview of the project objectives and plans for the next four years.Peer ReviewedPostprint (published version
Factsheets Factsheets produced as a part of the Strategic Assessment of Development of the Arctic have been primarily designed as a background material for consultations with Arctic stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.