Diffuse axonal injury (DAI) is an important cause of morbidity in patients with traumatic brain injury (TBI). There is currently no simple and reliable technique for early identification of patients with DAI, or to prognosticate long-term outcome in this patient group. In the present study, we examined acute serum concentrations of neurofilament light (NFL) in nine patients with severe TBI and DAI using a novel ultrasensitive single molecule array (Simoa) assay. The relationships between the NFL concentrations and MRI in the acute stage as well as clinical outcome and magnetic resonance diffusion tensor imaging (MR-DTI) parameters at 12 months were analyzed. We found that the mean NFL concentrations among the patients displayed a 30-fold increase compared with controls, and that NFL completely discriminated between the patients and controls. We also found a relationship between serum NFL and MR-DTI parameters, with higher NFL concentrations in patients with higher trace (R = 0.79) and lower fractional anisotropy (FA) (R = 0.83). These results suggest that serum NFL may be a valuable blood biomarker for TBI, reflecting the severity of DAI.
ObjectiveTraumatic brain injury (TBI) is a leading cause of epilepsy. Our aim was to characterise the risk of epilepsy in adults after hospitalisation for TBI.MethodsRegister-based cohort study. All individuals aged 18–100 with a first hospitalisation for TBI in the comprehensive national patient register in Sweden between 2000 and 2010 (n=111 947) and three controls per exposed (n=325 881), matched on age and sex were included. Exposed individuals were categorised according to TBI severity. Kaplan-Meier curves were used to estimate the risk of epilepsy and Cox regression to estimate the hazard in univariate or multivariate regression.ResultsThe 10-year risk of epilepsy was 12.9% (95% CI 11.7% to 14.1%) for focal cerebral injuries, 8.1% (95% CI 7.5% to 8.7%) for diffuse cerebral injuries, 7.3% (95% CI 6.9% to 7.7%) for extracerebral injuries, 2.8% (95% CI 2.4% to 3.2%) for skull fractures and 2.6% (95% CI 2.4% to 2.8%) for mild TBI. The risk of epilepsy after any TBI was 4.0% (95% CI 3.8% to 4.2%). The corresponding 10-year risk for controls was 0.9% (95% CI 0.9% to 0.9%). The HR increased with a more severe injury, from 3.0 (95% CI 2.8 to 3.2) for mild injury to 16.0 (95% CI 14.5 to 17.5) for focal cerebral injury. Multivariable analyses identified central nervous system (CNS) comorbidities as risk factors, but TBI remained significant also after adjustment for these. Other identified risk factors were male sex, age, mechanical ventilation and seizure during index hospitalisation.ConclusionThe risk of post-traumatic epilepsy is considerable, also with adjustments for CNS comorbidities.
Traumatic brain injury (TBI) is the leading cause of death and disability among young persons. A key to improve outcome for patients with TBI is to reduce the time from injury to definitive care by achieving high triage accuracy. Microwave technology (MWT) allows for a portable device to be used in the pre-hospital setting for detection of intracranial hematomas at the scene of injury, thereby enhancing early triage and allowing for more adequate early care. MWT has previously been evaluated for medical applications including the ability to differentiate between hemorrhagic and ischemic stroke. The purpose of this study was to test whether MWT in conjunction with a diagnostic mathematical algorithm could be used as a medical screening tool to differentiate patients with traumatic intracranial hematomas, chronic subdural hematomas (cSDH), from a healthy control (HC) group. Twenty patients with cSDH and 20 HC were measured with a MWT device. The accuracy of the diagnostic algorithm was assessed using a leave-one-out analysis. At 100% sensitivity, the specificity was 75%—i.e., all hematomas were detected at the cost of 25% false positives (patients who would be overtriaged). Considering the need for methods to identify patients with intracranial hematomas in the pre-hospital setting, MWT shows promise as a tool to improve triage accuracy. Further studies are under way to evaluate MWT in patients with other intracranial hemorrhages.
The diffusion properties of the corpus callosum correlated with clinical outcome in this longitudinal investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.