Global increases in temperatures and urbanization are impacting the epidemiology of mosquito-borne diseases. Urbanization processes create suitable habitats for vector mosquitoes in which there are a reduced number of predators, and human hosts are widely available. We hypothesize that mosquito vector species, especially Aedes aegypti, are locally concentrated primarily in those specific habitats at the neighborhood levels that provide suitable conditions and environmental resources needed for mosquito survival. Determining how mosquito vector species composition and abundance depend on environmental resources across habitats addresses where different types of vector control need to be applied. Therefore, our goal was to analyze and identify the most productive aquatic habitats for mosquitoes in Miami-Dade County, Florida. Immature mosquito surveys were conducted throughout Miami-Dade County from April 2018 to June 2019, totaling 2,488 inspections. Mosquitoes were collected in 76 different types of aquatic habitats scattered throughout 141 neighborhoods located in the urbanized areas of Miami-Dade County. A total of 44,599 immature mosquitoes were collected and Ae. aegypti was the most common and abundant species, comprising 43% of all specimens collected. Aedes aegypti was primarily found in buckets, bromeliads, and flower pots, concentrated in specific neighborhoods. Our results showed that aquatic habitats created by anthropogenic land-use modifications (e.g., ornamental bromeliads, buckets, etc.) were positively correlated with the abundance of Ae. aegypti. This study serves to identify how vector mosquitoes utilize the resources available in urban environments and to determine the exact role of these specific urban features in supporting populations of vector mosquito species. Ultimately, the identification of modifiable urban features will allow the development of targeted mosquito control strategies optimized to preventatively control vector mosquitoes in urban areas.
Vector-borne diseases are a heavy burden to human-kind. Global warming and urbanization have a significant impact on vector-borne disease transmission, resulting in more severe outbreaks, and outbreaks in formerly non-endemic areas. Miami-Dade County, Florida was the most affected area in the continental United States during the 2016 Zika virus outbreak. Miami is an important gateway and has suitable conditions for mosquitoes year-round. Therefore, it was critical to establish and validate a surveillance system to guide and improve mosquito control operations. Here we assess two years of mosquito surveillance in Miami established after the 2016 Zika virus outbreak. Our results show that the most abundant mosquito species are either well adapted to urban environments or are adapting to it. The five most abundant species comprised 85% of all specimens collected, with four of them being primary vectors of arboviruses. Aedes aegypti and Culex quinquefasciatus were found year-round throughout Miami regardless of urbanization level, vegetation, or socioeconomic variations. This study serves as a foundation for future efforts to improve mosquito surveillance and control operations.
Vector-borne diseases are an increasing issue to public health, endangering billions of people worldwide. Controlling vector mosquitoes is widely accepted as the most effective way to prevent vector-borne disease outbreaks. Mosquito surveillance is critical for the development of control strategies under the integrated vector management framework. We hypothesize that the effectiveness and reliability of using BG-Sentinel traps for the surveillance strongly depend on the bait used to attract mosquitoes. The objective of this study was to compare the effectiveness of BG-Sentinel traps baited with CO 2 and BG-Lure. A total of 72 traps were deployed for 48 hours once a week for four weeks. For the initial 24-hour period, the traps were baited with CO 2 , and then for an additional 24 hours using the BG-Lure. Collected mosquitoes were analyzed using the Generalized Estimating Equation for repeated measures analysis. Biodiversity was assessed by the Shannon and Simpson indices and by individual rarefaction curves and SHE profiles. A total of 5,154 mosquitoes were collected, from which 3,514 by traps baited with CO 2 and 1,640 mosquitoes by traps baited with BG-Lure. Aedes aegypti and Culex quinquefasciatus were the most abundant and dominant species. Results from the Generalized Estimating Equation models indicated that more than twice as many mosquitoes were attracted CO 2 than to the BG-Lure. The comparison of attractiveness of CO 2 and BG-Lure to Ae . aegypti and Cx . quinquefasciatus was non-significant, suggesting that both species were equally attracted by the baits. The individual rarefaction curves for Ae . aegypti and Cx . quinquefasciatus imply that traps baited with BG-Lure underestimated mosquito species richness compared to those baited with CO 2 . BG-Lure were less effective in attracting mosquitoes with low abundances and failed to collect Cx . coronator and Cx . nigripalpus , which were consistently collected by traps baited with CO 2 . According to our results, CO 2 significantly ( P <0.05) attracted more mosquitoes (2.67 adjusted odds ratios) than the BG-Lure when adjusted for time and species, being more effective in assessing the relative abundance of vector mosquitoes and yielding more trustworthy results. Traps baited with CO 2 collected not only more specimens, but also more species in a more consistent pattern.
Aedes aegypti is the main vector of dengue, Zika, chikungunya, and yellow fever viruses. Controlling populations of vector mosquito species in urban environments is a major challenge and being able to determine what aquatic habitats should be prioritized for controlling Ae. aegypti populations is key to the development of more effective mosquito control strategies. Therefore, our objective was to leverage on the Miami-Dade County, Florida immature mosquito surveillance system based on requested by citizen complaints through 311 calls to determine what are the most important aquatic habitats in the proliferation of Ae. aegypti in Miami. We used a tobit model for Ae. aegypti larvae and pupae count data, type and count of aquatic habitats, and daily rainfall. Our results revealed that storm drains had 45% lower percentage of Ae. aegypti larvae over the total of larvae and pupae adjusted for daily rainfall when compared to tires, followed by bromeliads with 33% and garbage cans with 17%. These results are indicating that storm drains, bromeliads and garbage cans had significantly more pupae in relation to larvae when compared to tires, traditionally know as productive aquatic habitats for Ae. aegypti . Ultimately, the methodology and results from this study can be used by mosquito control agencies to identify habitats that should be prioritized in mosquito management and control actions, as well as to guide and improve policies and increase community awareness and engagement. Moreover, by targeting the most productive aquatic habitats this approach will allow the development of critical emergency outbreak responses by directing the control response efforts to the most productive aquatic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.