A method for catalytic asymmetric alkylation of conjugated dienyl amides has been developed and it allows efficient and high-yielding transformations of a wide range of polyconjugated amides into the corresponding chiral products. Smooth addition of organomagnesium reagents to relatively unreactive dienyl amides with excellent 1,6- and 1,4-selectivities, as well as enantioselectivites above 90 %, is achieved owing to the complementary action of the Lewis acid and a chiral copper-based catalyst.
We describe a general
catalytic methodology for the enantioselective
dearomative alkylation of pyridine derivatives with Grignard reagents,
allowing direct access to nearly enantiopure chiral dihydro-4-pyridones
with yields up to 98%. The methodology involves dearomatization of
in situ-formed
N
-acylpyridinium salts, employing
alkyl organomagnesium reagents as nucleophiles and a chiral copper
(I) complex as the catalyst. Computational and mechanistic studies
provide insights into the origin of the reactivity and enantioselectivity
of the catalytic process.
A method for catalytic asymmetric alkylation of conjugated dienyl amides has been developed and it allows efficient and high‐yielding transformations of a wide range of polyconjugated amides into the corresponding chiral products. Smooth addition of organomagnesium reagents to relatively unreactive dienyl amides with excellent 1,6‐ and 1,4‐selectivities, as well as enantioselectivites above 90 %, is achieved owing to the complementary action of the Lewis acid and a chiral copper‐based catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.