General methods to prepare chiral N‐heterocyclic molecular scaffolds are greatly sought after because of their significance in medicinal chemistry. Described here is the first general catalytic methodology to access a wide variety of chiral 2‐ and 4‐substituted tetrahydro‐quinolones, dihydro‐4‐pyridones, and piperidones with excellent yields and enantioselectivities, utilizing a single catalyst system.
A kind of palladium-modified functionalized cyclodextrin catalytic system was synthesized and characterized. It showed high activity in the reduction of nitroarenes with the absence of sodium borohydride in water at room temperature.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.
A method for catalytic asymmetric alkylation of conjugated dienyl amides has been developed and it allows efficient and high-yielding transformations of a wide range of polyconjugated amides into the corresponding chiral products. Smooth addition of organomagnesium reagents to relatively unreactive dienyl amides with excellent 1,6- and 1,4-selectivities, as well as enantioselectivites above 90 %, is achieved owing to the complementary action of the Lewis acid and a chiral copper-based catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.