As NaHCO3 ingestion does not increase resting muscle pH or beta(in vitro), it is likely that the improved performance is a result of the greater extracellular buffer concentration increasing H efflux from the muscles into the blood. The significant increase in posttest muscle [La] in NaHCO3 suggests that an increased anaerobic energy contribution is one mechanism by which NaHCO3 ingestion improved RSA.
Objective: To compare the effects of three types of full-body compression garments (Skins, Adidas and Under Armour) on repeat-sprint and throwing performance in cricket players. Methods: Following familiarisation, 10 male cricket players performed four randomised exercise sessions (3 garments and a control). Each session involved a 30 min repeat-sprint exercise protocol comprising 20 m sprints every minute, separated by submaximal exercise. Throwing tests included a pre-exercise and a postexercise maximal distance test and accuracy throwing tests. During each session, measures of heart rate, skin temperature, change in body mass, rate of perceived exertion and perceived muscle soreness were recorded. Capillary blood samples were analysed before and after exercise for lactate, pH, O 2 saturation and O 2 partial pressure, and 24 h after exercise for creatine kinase (CK). Ratings of perceived muscle soreness were also obtained 24 h after exercise. Results: No significant differences (p.0.05) were evident in repeat-sprint performance (10 m, 20 m time or total submaximal distance covered) or throwing performance (maximum distance or accuracy). No significant differences (p.0.05) were observed in heart rate, body mass change or blood measures during exercise. Significant differences (p,0.05) were observed by way of higher mean skin temperature, lower 24 h postexercise CK values and lower 24 h postexercise ratings of muscle soreness when wearing compression garments. Analysis between respective brands of compression garments revealed no statistical differences (p.0.05). Conclusions: No benefit was noted when wearing compression garments for repeat-sprint or throwing performance; however, the use of the garments as a recovery tool, when worn after exercise, may be beneficial to reduce postexercise trauma and perceived muscle soreness.
We examined changes in muscle buffer capacity (beta m(in vitro)), VO2peak and the lactate threshold (LT) after 5 weeks of high-intensity interval training (INT) above the LT or moderate-intensity continuous training (CON) just below the LT. Prior to and immediately after training, 16 female subjects performed a graded exercise test to determine VO2peak and the LT, followed 2 days later by a resting muscle biopsy from the vastus lateralis muscle to determine beta m(in vitro). Following baseline testing, the subjects were randomly placed into the INT (n=8) or CON training group (n=8). Subjects then performed 5 weeks of cycle training (3 days per week), performing either high-intensity INT (6-10x2 min at 120-140% LT with 1 min rest) or moderate-intensity CON (80-95% LT) training. Total training volume was matched between the two groups. After the training period, both groups had significant improvements in VO2peak (12-14%; P<0.05) and the LT (7-10%; P<0.05), with no significant differences between groups. The INT group, however, had significantly greater improvements in beta m(in vitro) (25%; 123+/-5-153+/-7 micromol H+ x g muscle dm(-1) x pH(-1); P<0.05) than the CON group (2%; 130+/-12-133+/-7 micromol H+ x g muscle dm(-1) x pH(-1), P>0.05). Our results show that when matched for training volume, high-intensity interval training above the LT results in similar improvements in VO2peak and the LT, but greater improvements in beta m(in vitro) than moderate-intensity continuous training below the LT. This suggests that training intensity is an important determinant of changes to beta m(in vitro).
The effect of duration-matched concurrent exercise training (CET) (50% resistance (RET) and 50% endurance (EET) training) on physiological training outcomes in untrained middle-aged men remains to be elucidated. Forty-seven men (age, 48.1 ± 6.8 years; body mass index, 30.4 ± 4.1 kg·m(-2)) were randomized into 12-weeks of EET (40-60 min of cycling), RET (10 exercises; 3-4 sets × 8-10 repetitions), CET (50% serial completion of RET and EET), or control condition. The following were determined: intervention-based changes in fitness and strength; abdominal visceral adipose tissue (VAT), total body fat (TB-FM) and fat-free (TB-FFM) mass; plasma cytokines (C-reactive protein (CRP), tumor necrosis factor-α (TNFα) interleukin-6 (IL-6)); muscle protein content of p110α and glucose transporter 4 (GLUT4); mRNA expression of GLUT4, peroxisome proliferator-activated receptor-γ coactivator-1α-β, cytochrome c oxidase, hexokinase II, citrate synthase; oral glucose tolerance; and estimated insulin sensitivity. CET promoted commensurate improvements of aerobic capacity and muscular strength and reduced VAT and TB-FM equivalently to EET and RET (p < 0.05), yet only RET increased TB-FFM (p < 0.05). Although TNFα and IL-6 were reduced after all training interventions (p < 0.05), CRP remained unchanged (p > 0.05). EET reduced area under the curve for glucose, insulin, and C-peptide, whilst CET and RET respectively reduced insulin and C-peptide, and C-peptide only (p < 0.05). Notwithstanding increased insulin sensitivity index after all training interventions (p < 0.05), no change presented for GLUT4 or p110α total protein, or chronic mRNA expression of the studied mitochondrial genes (p > 0.05). In middle-aged men, 12 weeks of duration-matched CET promoted commensurate changes in fitness and strength, abdominal VAT, plasma cytokines and insulin sensitivity, and an equidistant glucose tolerance response to EET and RET; despite no change of measured muscle mechanisms associative to insulin action, glucose transport, and mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.