Realistic human head models are of great interest in traumatic brain injury research and in the forensic pathology courtroom and teaching. Due to a lack of biomechanical data, the human dura mater is underrepresented in head models. This study provides tensile data of 73 fresh human cranial dura mater samples retrieved from an area between the anterior middle and the posterior middle meningeal artery. Tissues were adapted to their native water content using the osmotic stress technique. Tensile tests were conducted under quasi-static uniaxial testing conditions with simultaneous digital image correlation. Human temporal dura mater is mechanically highly variable with regards to its elastic modulus of 70 ± 44 MPa, tensile strength of 7 ± 4 MPa, and maximum strain of 11 ± 3 percent. Mechanical properties of the dura mater did not vary significantly between side nor sex and decreased with the age of the cadaver. Both elastic modulus and tensile strength appear to have constant mechanical parameters within the first 139 hours post mortem. The mechanical properties provided by this study can help to improve computational and physical human head models. These properties under quasi-static conditions do not require adjustments for side nor sex, whereas adjustments of tensile properties accompanied with normal aging may be of interest.
Embalming fixatives such as formaldehyde and phenol have been associated with occupational health hazards. While anatomists aim at replacing these chemicals, this seems presently unfeasible in particular for formaldehyde. Furthermore, fixation protocols usually require well-equipped facilities with highly experienced staff to achieve good fixation results in spite of only a minimal use of formaldehyde. Combining these aspects, a technique robust enough to be carried out by morticians is presented, resulting in durable tissues with minimal formaldehyde use. An embalming protocol involving phenoxyethanol was established, using concentrations of 7 and 1.5 Vol% of phenoxyethanol in the fixative and the conservation fluid, respectively. Visual, haptic, histological, and biomechanical properties and their perceived potential to positively influence student learning outcomes were compared to standard embalming techniques. The phenoxyethanol technique provides esthetic, durable, and odorless tissues. Bleaching is less pronounced compared to ethanol-or formaldehydebased protocols. The tissues remain pliable following the phenoxyethanol-based embalming and can be used for biomechanical experiments to some extent. Phenoxyethanol-fixed tissues are well suited for undergraduate teaching with perceived positive learning outcomes and partly for postgraduate training. Phenoxyethanol tissues provide the option to obtain well-preserved histology samples, similar to those derived from formaldehyde. The provided protocol helps replace the use of phenol and formaldehyde for conservation purposes and minimizes the use of formaldehyde for the initial injection fixation. Phenoxyethanol-based embalming forms an effective alternative to standard embalming techniques for human cadavers. It is simple to use, allowing fixation procedures to be carried out in less sophisticated facilities with non-anatomy staff. Anat Sci Educ 0: 1-16.
Thiel embalming is a well-known method of anatomical fixation giving lifelike optical and haptic tissue properties. Beyond these characteristics, Thiel embalming may also be a promising method to provide lifelike tissues for validation purposes of human head biomechanics. Recent investigations using Thielembalmed human tissues of the upper and lower limb yielded contradicting biomechanical results on fixation-induced changes in the tissues' load-deformation behavior. It is to date unclear if Thiel embalming may have a softening or stiffening effect on human soft tissues or no global effect on biomechanics compared to the fresh state, with the latter being the most desirable outcome. The given study aimed at assessing the effects of Thiel embalming on the uniaxial tensile properties of human head soft tissues. Age-matched fresh and Thiel-embalmed dura mater, temporalis muscle, temporalis muscle fascia, and scalp samples were examined. Dura, fascia, and scalp samples showed significantly different elastic moduli compared to fresh tissues (all P < 0.01). The observed ultimate tensile strength supports the theory of an increased collagen crosslinking of the embalmed tissues when compared to the fresh state. Thiel-embalmed muscles failed any tensile testing approach as a result of the muscles dissolving due to the embalming. Furthermore, collagen integrity seems altered in scanning electron microscopy by the Thiel embalming, limiting their use for ultrastructural failure analyses. Thiel-embalmed soft tissues may consequently not serve to reflect the biomechanical properties of the human head. Consequently, the application of Thiel embalming should be limited to preliminary tests for biomechanical purposes. Clin. Anat. 32:903-913, 2019.
Aim: To investigate load-deformation properties of Thiel-embalmed human oral mucosa tissues and to compare three different anatomical regions in terms of mechanical, histological and ultrastructural characteristic with focus on the extracellular matrix. Materials and Methods: Thirty specimens from three different regions of the oral cavity: attached gingiva, buccal mucosa and the hard palate were harvested from two Thiel-embalmed cadavers. Mechanical properties were obtained, combining strain evaluation and digital image correlation in a standardised approach. Elastic modulus, tensile strength, strain at maximum load and strain to failure were computed and analysed statistically. Subsamples were also analysed using scanning electron microscopy (SEM) and histological analysis. Results: The highest elastic modulus of 37.36 ± 17.4 MPa was found in the attached gingiva group, followed by the hard palate and buccal mucosa. The elastic moduli of attached gingiva differed significantly to the buccal mucosa (p = .01) and hard palate (p = .021). However, there was no difference in the elastic moduli between the buccal mucosa and hard palate (p > .22). The tensile strength of the tissue samples ranged from 1.54 ± 0.5MPa to 3.81 ± 0.9 MPa, with a significant difference between gingiva group and buccal mucosa or hard palate (p = .001). No difference was found in the mean tensile strength between the buccal mucosa and hard palate (p = .92). Ultrastructural imaging yielded a morphological basis for the various mechanical properties found intraorally; the attached gingiva showed unidirectional collagen fibre network whereas the buccal mucosa and hard palate showed multi-directional network, which was more prone to tension failure and less elasticity. Conclusion: This is the first study assessing the various morphological-mechanical relationships of intraoral soft tissues, utilising Thiel-embalmed tissues. The findings of this study suggest that the tissues from different intraoral regions showed various morphological-mechanical behaviour which was also confirmed under the SEM and in the histological analysis.
The subthalamic nucleus (STN) is a main target structure of deep brain stimulation (DBS) in idiopathic Parkinson's disease. Nevertheless, there is an ongoing discussion regarding human STN volumes and neuron count, which could potentially have an impact on STN-DBS. Moreover, a suspected functional subdivision forms the basis of the tripartite hypothesis, which has not yet been morphologically substantiated. In this study, it was aimed to investigate the human STN by means of combined magnetic resonance imaging (MRI) and stereology. STN volumes were obtained from 14 individuals (ranging from 65 to 96 years, 25 hemispheres) in 3 T MRI and in luxol-stained histology slices. Neuron number and cell densities were investigated stereologically over the entire STN and in pre-defined subregions in anti-human neuronal protein HuC/D-stained slices. STN volumes measured with MRI were smaller than in stereology but appeared to be highly consistent, measuring on average 99 ± 6 mm (MRI) and 132 ± 20 mm (stereology). The neuron count was 431,088 ± 72,172. Both STN volumes and cell count decreased age-dependently. Neuron density was different for the dorsal, medial and ventral subregion with significantly higher values ventrally than dorsally. Small variations in STN volumes in both MRI and stereology contradict previous findings of large variations in STN size. Age-dependent decreases in STN volumes and neuron numbers might influence the efficacy of STN-DBS in a geriatric population. Though the study is limited in sample size, site-dependent differences for the STN subregions form a morphological basis for the tripartite theory. Hum Brain Mapp 38:909-922, 2017. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.