Flicker light stimulation can induce short-term alterations in consciousness including hallucinatory color perception and geometric patterns. In the study at hand, the subjective experiences during 3 Hz and 10 Hz stroboscopic light stimulation of the closed eyes were assessed. In a within-subjects design (N = 24), we applied the Positive and Negative Affect Schedule (mood state), time perception ratings, the Altered State of Consciousness Rating Scale, and the Phenomenology of Consciousness Inventory. Furthermore, we tested for effects of personality traits (NEO Five-Factor Inventory-2 and Tellegen Absorption Scale) on subjective experiences. Such systematic quantification improves replicability, facilitates comparisons between pharmacological and non-pharmacological techniques to induce altered states of consciousness, and is the prerequisite to study their underlying neuronal mechanisms. The resulting data showed that flicker light stimulation-induced states were characterized by vivid visual hallucinations of simple types, with effects strongest in the 10 Hz condition. Additionally, participants’ personality trait of Absorption scores highly correlated with the experienced alterations in consciousness. Our data demonstrate that flicker light stimulation is capable of inducing visual effects with an intensity rated to be similar in strength to effects induced by psychedelic substances and thereby support the investigation of potentially shared underlying neuronal mechanisms.
Flicker light stimulation (FLS) is a non-pharmacological method to induce short-term consciousness alterations, like hallucinatory perceptions of colors and geometric patterns. Recently, the phenomenologies of several techniques to induce altered states of consciousness (ASCs) were investigated in a structured manner. Such systematic quantification improves replicability, allows direct comparison between techniques and is the prerequisite to study their underlying neuronal mechanisms. In a within-subjects repeated measures design (N = 24), we assessed the subjective experiences during 3 Hz and 10 Hz FLS, by application of the Positive and Negative Affect Schedule (mood state), time perception ratings, the Altered State of Consciousness Rating Scale, and the Phenomenology of Consciousness Inventory. Furthermore, we tested for effects of personality traits (NEO Five-Factor Inventory-2 and Tellegen Absorption Scale) on subjective experiences. The data show that FLS-induced states were especially characterized by vivid visual imagery of simple and complex types, with stronger effects in the 10 Hz condition. In addition, we found high correlations between the intensity of the subjectively experienced alterations in consciousness state with participants’ personality trait of Absorption. Our data demonstrate that FLS can induce visual effects of comparable intensity as induced by psychedelic substances and thereby motivates investigation of potentially shared underlying neuronal mechanisms.
The thalamus is primarily known as a relay for sensory information; however, it also critically contributes to higher-order cortical processing and coordination. Thalamocortical hyperconnectivity is associated with hallucinatory phenomena that occur in various psychopathologies (e.g., psychosis, migraine aura) and altered states of consciousness (ASC, e.g., induced by psychedelic drugs). However, the exact functional contribution of thalamocortical hyperconnectivity in forming hallucinatory experiences is unclear. Flicker light stimulation (FLS) can be used as an experimental tool to induce transient visual hallucinatory phenomena in healthy participants. Here, we use FLS in combination with fMRI to test how FLS modulates thalamocortical connectivity between specific thalamic nuclei and visual areas. We show that FLS induces thalamocortical hyperconnectivity between LGN, early visual areas and proximal upstream areas of ventral and dorsal visual streams (e.g., hV4, VO1, V3a). Further, an exploratory analysis indicates specific higher-order thalamic nuclei, such as anterior and mediodorsal nuclei, to be strongly affected by FLS. Here, the connectivity changes to upstream cortical visual areas directly reflect a frequency-dependent increase in experienced visual phenomena. Together these findings contribute to the identification of specific thalamocortical interactions in the emergence of visual hallucinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.