CO conversion covers a wide range of possible application areas from fuels to bulk and commodity chemicals and even to specialty products with biological activity such as pharmaceuticals. In the present review, we discuss selected examples in these areas in a combined analysis of the state-of-the-art of synthetic methodologies and processes with their life cycle assessment. Thereby, we attempted to assess the potential to reduce the environmental footprint in these application fields relative to the current petrochemical value chain. This analysis and discussion differs significantly from a viewpoint on CO utilization as a measure for global CO mitigation. Whereas the latter focuses on reducing the end-of-pipe problem "CO emissions" from todays' industries, the approach taken here tries to identify opportunities by exploiting a novel feedstock that avoids the utilization of fossil resource in transition toward more sustainable future production. Thus, the motivation to develop CO-based chemistry does not depend primarily on the absolute amount of CO emissions that can be remediated by a single technology. Rather, CO-based chemistry is stimulated by the significance of the relative improvement in carbon balance and other critical factors defining the environmental impact of chemical production in all relevant sectors in accord with the principles of green chemistry.
Design in the chemical industry increasingly aims not only at economic but also at environmental targets. Environmental targets are usually best quantified using the standardized, holistic method of life cycle assessment (LCA). The resulting life cycle perspective poses a major challenge to chemical engineering design because the design scope is expanded to include process, product, and supply chain. Here, we first provide a brief tutorial highlighting key elements of LCA. Methods to fill data gaps in LCA are discussed, as capturing the full life cycle is data intensive. On this basis, we review recent methods for integrating LCA into the design of chemical processes, products, and supply chains. Whereas adding LCA as a posteriori tool for decision support can be regarded as established, the integration of LCA into the design process is an active field of research. We present recent advances and derive future challenges for LCA-based design. 203 Annu. Rev. Chem. Biomol. Eng. 2020.11:203-233. Downloaded from www.annualreviews.org Access provided by 44.224.250.200 on 07/08/20. For personal use only.
A techno-economic optimization of a commercial-scale, amine-based, post-combustion CO 2 capture process is carried out. The most economically favorable process configuration, sizing and operating conditions are identified using a superstructure formulation. The superstructure has 12 288 possible process configurations and unit operations in the superstructure are described using rigorous, rate-based models. In order to simplify the optimization problem, the problem is decomposed and process simulations are explicitly handled in the process simulator. Optimization is performed externally using a genetic algorithm. The best found process configuration includes the absorber intercooling, the rich vapor recompression, and the cold solvent split. The result of this study is compared in terms of the cost of capture basis and shows 38% reduction on the annual operation cost, compared to the conventional amine-based CO 2 capture process. Moreover, the savings on the total annualized cost is ∼13%, which is an increase of 30% on the annualized investment cost resulting from additional unit operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.