Reducing net emission The great majority of plastics in current use are sourced from fossil fuels, with additional fossil fuels combusted to power their manufacture. Substantial research is focused on finding more sustainable building blocks for next-generation polymers. Meys et al . report a series of life cycle analyses suggesting that even the current varieties of commercial monomers could potentially be manufactured and polymerized with no net greenhouse gas emissions. The cycle relies on combining recycling of plastic waste with chemical reduction of carbon dioxide captured from incineration or derived from biomass. —JSY
The intended audience for this document are practitioners that want to learn how to create comprehensible and consistent techno-economic assessments and life cycle assessments in the CCU field. These practitioners may come from academia, industry or government and may work in technology assessment and technology research and development, or funding, they may be part of the CCU community, the TEA community or the LCA community. Readers of TEA and LCA, such as investors, policy Part A: General Assessment Principles Part B: TEA guidelines Part C: LCA guidelines PART A: GENERAL ASSESSMENT PRINCIPLES TEA & LCA Guidelines for CO2 Utilization 8makers or funding decision makers are not the intended audience for these TEA and LCA guidelines, but may use this document to understand the challenges and pitfalls for TEA and LCA. A.2.4 Limitations of this documentThese guidelines have been developed to enable consistent and comparable LCA and TEA studies for CCU. They are not intended to serve as an assessment standard or rulebook. Instead they are meant to help practitioners to conduct sound assessments efficiently, avoid common mistakes and to derive meaningful results that can be compared to other studies. This document serves as an addition to conventional existing standards (in particular for LCA) and literature and does not replace any chemical engineering, economics or project planning principles. However, since the guidelines aim to enhance the comparability and transparency of studies, the LCA guidelines are more restrictive than the general ISO-framework. In some cases, there may be need to add further tasks to the ones discussed in this guideline since they are important to a specific study. Such additions are not excluded by the present guideline. However, the guidelines provide a consistent methodological core for conducting all LCA and TEA CCU studies.This document is intended as the first step of a longer framework development process. TEA and LCA remain two separate approaches in this document as is common in current assessment practice in academic literature and industry. However, a combined approach is in strong demand to include trade-offs in decision making. The integration of TEA and LCA into one singular study is a next major development step that is subject to future work. This document provides some initial guidance to those who wish to carry out an integrated TEA & LCA study, however many facets of the integration process are still to be determined. A.2.5 The guidelinesThe guidelines for TEA are presented in part B of this document and LCA in part C. At the end of each guideline chapter there is a box listing rules that these guidelines recommend. The box contains three categories, shall, should and may:TEA & LCA Guidelines for CO2 Utilization 9TEA & LCA Guidelines for CO2 Utilization 14 A.4.2.4 GuidelinesGuideline A.1 -Technology maturity Shall 1) Technology maturity shall be defined in each assessment -first for each system element and second for the overall product system 2) The maturity of the over...
Carbon Capture and Utilization (CCU) is an emerging field proposed for emissions mitigation and even negative emissions. These potential benefits need to be assessed by the holistic method of Life Cycle Assessment (LCA) that accounts for multiple environmental impact categories over the entire life cycle of products or services. However, even though LCA is a standardized method, current LCA practice differs widely in methodological choices. The resulting LCA studies show large variability which limits their value for decision support. Applying LCA to CCU technologies leads to further specific methodological issues, e.g., due to the double role of CO 2 as emission and feedstock. In this work, we therefore present a comprehensive guideline for LCA of CCU technologies. The guideline has been development in a collaborative process involving over 40 experts and builds upon existing LCA standards and guidelines. The presented guidelines should improve comparability of LCA studies through clear methodological guidance and predefined assumptions on feedstock and utilities. Transparency is increased through interpretation and reporting guidance. Improved comparability should help to strengthen knowledge-based decision-making. Consequently, research funds and time can be allocated more efficiently for the development of technologies for climate change mitigation and negative emissions.
Design in the chemical industry increasingly aims not only at economic but also at environmental targets. Environmental targets are usually best quantified using the standardized, holistic method of life cycle assessment (LCA). The resulting life cycle perspective poses a major challenge to chemical engineering design because the design scope is expanded to include process, product, and supply chain. Here, we first provide a brief tutorial highlighting key elements of LCA. Methods to fill data gaps in LCA are discussed, as capturing the full life cycle is data intensive. On this basis, we review recent methods for integrating LCA into the design of chemical processes, products, and supply chains. Whereas adding LCA as a posteriori tool for decision support can be regarded as established, the integration of LCA into the design process is an active field of research. We present recent advances and derive future challenges for LCA-based design. 203 Annu. Rev. Chem. Biomol. Eng. 2020.11:203-233. Downloaded from www.annualreviews.org Access provided by 44.224.250.200 on 07/08/20. For personal use only.
The rapid growth of plastics production exacerbated the triple planetary crisis of habitat loss, plastic pollution and greenhouse gas (GHG) emissions. Circular strategies have been proposed for plastics to achieve net-zero GHG emissions. However, the implications of such circular strategies on absolute sustainability have not been examined on a planetary scale. This study links a bottom-up model covering both the production and end-of-life treatment of 90% of global plastics to the planetary boundaries framework. Here we show that even a circular, climate-optimal plastics industry combining current recycling technologies with biomass utilization transgresses sustainability thresholds by up to four times. However, improving recycling technologies and recycling rates up to at least 75% in combination with biomass and CO2 utilization in plastics production can lead to a scenario in which plastics comply with their assigned safe operating space in 2030. Although being the key to sustainability and in improving the unquantified effect of novel entities on the biosphere, even enhanced recycling cannot cope with the growth in plastics demand predicted until 2050. Therefore, achieving absolute sustainability of plastics requires a fundamental change in our methods of both producing and using plastics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.