Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSHdisulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2-31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5 region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.
We have determined the sequence of 23 peptides from bovine thioredoxin reductase covering 364 amino acid residues. The result was used to identify a rat cDNA clone (2.19 kilobase pairs), which contained an open reading frame of 1496 base pairs encoding a protein with 498 residues. The bovine and rat thioredoxin reductase sequences revealed a close homology to glutathione reductase including the conserved active site sequence (Cys-Val-Asn-Val-Gly-Cys). This also confirmed the identity of a previously published putative human thioredoxin reductase cDNA clone. Moreover, one peptide of the bovine enzyme contained a selenocysteine residue in the motif Gly-Cys-SeCys-Gly (where SeCys represents selenocysteine). This motif was conserved at the carboxyl terminus of the rat and human enzymes, provided that TGA in the sequence GGC TGC TGA GGT TAA, being identical in both cDNA clones, is translated as selenocysteine and that TAA confers termination of translation. The 3-untranslated region of both cDNA clones contained a selenocysteine insertion sequence that may form potential stem loop structures typical of eukaryotic selenocysteine insertion sequence elements required for the decoding of UGA as selenocysteine. Carboxypeptidase Y treatment of bovine thioredoxin reductase after reduction by NADPH released selenocysteine from the enzyme with a concomitant loss of enzyme activity measured as reduction of thioredoxin or 5,5-dithiobis(2-nitrobenzoic acid). This showed that the carboxyl-terminal motif was essential for the catalytic activity of the enzyme.Thioredoxin reductase is a dimeric enzyme with a redoxactive disulfide and an FAD in each monomer, and it is a member of a larger family of pyridine nucleotide-disulfide oxidoreductases, which includes the closely related enzymes lipoamide dehydrogenase, glutathione reductase, trypanothione reductase, and mercuric ion reductase (1). Thioredoxin reductase (TrxR) 1 catalyzes the NADPH-dependent reduction of the active site disulfide in oxidized thioredoxin (Trx-S 2 ) to give a dithiol in reduced thioredoxin (Trx-(SH) 2 ).
Thioredoxins (Trx) are small ubiquitous proteins that participate in different cellular processes via redox-mediated reactions. We report here the identification and characterization of a novel member of the thioredoxin family in humans, named Sptrx (sperm-specific trx), the first with a tissue-specific distribution, located exclusively in spermatozoa. Sptrx open reading frame encodes for a protein of 486 amino acids composed of two clear domains: an N-terminal domain consisting of 23 highly conserved repetitions of a 15-residue motif and a C-terminal domain typical of thioredoxins. Northern analysis and in situ hybridization shows that Sptrx mRNA is only expressed in human testis, specifically in round and elongating spermatids. Immunostaining of human testis sections identified Sptrx protein in spermatids, while immunofluorescence and immunogold electron microscopy analysis demonstrated Sptrx localization in the cytoplasmic droplet of ejaculated sperm. Sptrx appears to have a multimeric structure in native conditions and is able to reduce insulin disulfide bonds in the presence of NADPH and thioredoxin reductase. During mammalian spermiogenesis in testis seminiferous tubules and later maturation in epididymis, extensive reorganization of disulfide bonds is required to stabilize cytoskeletal sperm structures. However, the molecular mechanisms that control these processes are not known. The identification of Sptrx with an expression pattern restricted to the postmeiotic phase of spermatogenesis, when the sperm tail is organized, suggests that Sptrx might be an important factor in regulating critical steps of human spermiogenesis. Thioredoxins (Trx)1 are low molecular weight proteins (12 kDa) that catalyze thiol-disulfide redox reactions by the reversible oxidation of the cysteine residues of their conserved active site WCGPC (1). Thioredoxins are maintained in their active reduced form by the flavoenzyme thioredoxin reductase that uses the reducing power of NADPH, which constitutes the so-called thioredoxin system (2). All of the organisms from bacteria to humans appear to have at least one complete thioredoxin system, and the progressive complexity of eukaryotic organisms is also reflected in the increasing number of thioredoxin systems. Thus, Escherichia coli contains two thioredoxins and one thioredoxin reductase; yeast has two thioredoxin systems, one in cytosol and the other one in mitochondria; and photosynthetic organisms have several thioredoxin systems in different cellular compartments including chloroplasts. Finally, mammalian cells have at least two thioredoxin systems located in the cytosol and mitochondria, respectively (3). Different functions have been assigned to thioredoxins relying mostly on their general disulfide-reductase activity. In mammals, cytosolic Trx has been shown to be an antioxidant; a modulator of apoptosis, cell growth, and differentiation; and also a regulator of the DNA-binding activity of several transcription factors (following translocation into the nucleus), while the func...
Insulin-like growth factor (IGF) I does not quantitatively form its three native disulfide bonds in the presence of 10 mM reduced and 1 mM oxidized glutathione in vitro [Hober, S. et al. (1992. In this paper, we show (i) that both IGF-I and IGF-II are unable to form and maintain their native disulfide bonds at redox conditions that are similar to the situation in the secretory vesicles in vivo and (ii) that the presence of protein disulfide isomerase does not overcome this problem. The results indicate that the previously described thermodynamic disulfide exchange folding problem of IGF-I in vitro is also present in vivo. Speculatively, we suggest that the thermodynamic disulfide exchange properties of IGF-I and II are biologically significant for inactivation of the unbound growth factors by disulfide exchange reactions to generate variants destined for rapid clearance.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.