Bone marrow-derived mesenchymal stem cells (MSCs) have the potential to differentiate along different mesenchymal lineages including those forming bone, cartilage, tendon, fat, muscle and marrow stroma that supports hematopoiesis. This differentiation potential makes MSCs candidates for cell-based therapeutic strategies for mesenchymal tissue injuries and for hematopoietic disorders by both local and systemic application. In the present study, rat marrow-derived MSCs were ex vivo culture-expanded, labeled with 111In-oxine, and infused into syngeneic rats via intra-artery (i.a.), intravenous (i.v.) and intraperitoneal cavity (i.p.) infusions. In addition, for i.a. and i.v. infusions, a vasodilator, sodium nitroprusside, was administered prior to the cell infusion and examined for its effect on MSC circulation. The dynamic distribution of infused MSCs was monitored by real-time imaging using a gamma camera immediately after infusion and at 48 h postinfusion. After 48 h, radioactivity in excised organs, including liver, lungs, kidneys, spleen and long bones, was measured in a gamma well counter and expressed as a percentage of injected doses. After both i.a. and i.v. infusion, radioactivity associated with MSCs was detected primarily in the lungs and then secondarily in the liver and other organs. When sodium nitroprusside was used, more labeled MSCs cleared the lungs resulting in a larger proportion detected in the liver. Most importantly, the homing of labeled MSCs to the marrow of long bones was significantly increased by the pretreatment with vasodilator. These results indicate multiple homing sites for injected MSCs and that the distribution of MSCs can be influenced by administration of vasodilator.
Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSHdisulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2-31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5 region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.
Protein transduction domains (PTD), such as the HIV TAT and the herpes simplex virus VP22 proteins, are reported to translocate across the membranes of mammalian cells. The mechanism of PTD membrane translocation has largely remained elusive, but recent studies suggest that the reported PTD translocation is due to a fixation artifact. We have constructed and expressed the PTDs VP22, TAT, polyarginine, and polylysine fused to the green fluorescent protein to visualize these proteins in both living and fixed cells. The investigated PTDs strongly adhered to the surface of living cells and were internalized by constitutive endocytosis. No cytosolic or nuclear import of the proteins was detected. In contrast, the PTD-GFP fusion proteins were redistributed to the cytosol and nucleus directly after fixation. Our findings suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. We suggest that the biological effects observed for PTD fusion proteins are due to cell surface interactions and internalization of the proteins into cells by classical endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.