Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSHdisulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2-31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5 region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.
Protein transduction domains (PTD), such as the HIV TAT and the herpes simplex virus VP22 proteins, are reported to translocate across the membranes of mammalian cells. The mechanism of PTD membrane translocation has largely remained elusive, but recent studies suggest that the reported PTD translocation is due to a fixation artifact. We have constructed and expressed the PTDs VP22, TAT, polyarginine, and polylysine fused to the green fluorescent protein to visualize these proteins in both living and fixed cells. The investigated PTDs strongly adhered to the surface of living cells and were internalized by constitutive endocytosis. No cytosolic or nuclear import of the proteins was detected. In contrast, the PTD-GFP fusion proteins were redistributed to the cytosol and nucleus directly after fixation. Our findings suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. We suggest that the biological effects observed for PTD fusion proteins are due to cell surface interactions and internalization of the proteins into cells by classical endocytosis.
All patients with chest pain who have an initial hs-cTnT level of <5 ng/l and no signs of ischemia on an ECG have a minimal risk of MI or death within 30 days, and can be safely discharged directly from the ED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.