Protein transduction domains (PTD), such as the HIV TAT and the herpes simplex virus VP22 proteins, are reported to translocate across the membranes of mammalian cells. The mechanism of PTD membrane translocation has largely remained elusive, but recent studies suggest that the reported PTD translocation is due to a fixation artifact. We have constructed and expressed the PTDs VP22, TAT, polyarginine, and polylysine fused to the green fluorescent protein to visualize these proteins in both living and fixed cells. The investigated PTDs strongly adhered to the surface of living cells and were internalized by constitutive endocytosis. No cytosolic or nuclear import of the proteins was detected. In contrast, the PTD-GFP fusion proteins were redistributed to the cytosol and nucleus directly after fixation. Our findings suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. We suggest that the biological effects observed for PTD fusion proteins are due to cell surface interactions and internalization of the proteins into cells by classical endocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.