Epstein-Barr virus (EBV)-associated posttransplant smooth muscle tumors (PTSMT)are very rare complications. We aimed to provide a clinicopathological characterization which is based on our own case series (n = 5) as well as previously reported PTSMT cases (n = 63). Meta-analysis of PTSMT and molecular analysis of tumor cells from our cohort was performed. Most PTSMT developed in kidney-transplanted patients (n = 41/68, 60%). Liver/transplant liver was the main site of manifestation (n = 38/68, 56%). Tumors occurred after a median interval of 48 months (range 5-348) and developed earlier in children than in adults. Most tumors showed no marked cellular atypia, low mitosis rate and no tumor necrosis. Gene expression analysis of 20 EBV-related genes, including two microRNAs, revealed overexpression of MYC (p = 0.0357). Therapy was mainly based on surgical resection or reduced immunosuppression but no significant differences in overall survival were evident. Lower overall survival was associated with multiorgan involvement (n = 33/68, 48.5%) and particularly with intracranial PTSMT manifestation (n = 7/68, 10%; p < 0.02), but not transplant involvement (n = 11/68, 16%). In summary, PTSMT differ from conventional leiomyosarcomas by their lack of marked atypia, unusual sites of involvement and defining EBV association. Surgery and reduced immunosuppression show comparable clinical results and prognosis is associated with intracranial manifestation.
BackgroundGrowth-differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor-β-related cytokine, which has recently been reported to be elevated in serum of patients with idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to examine the expression and biological roles of GDF-15 in the lung of patients with pulmonary arterial hypertension (PAH).MethodsGDF-15 expression in normal lungs and lung specimens of PAH patients were studied by real-time RT-PCR and immunohistochemistry. Using laser-assisted micro-dissection, GDF-15 expression was further analyzed within vascular compartments of PAH lungs. To elucidate the role of GDF-15 on endothelial cells, human pulmonary microvascular endothelial cells (HPMEC) were exposed to hypoxia and laminar shear stress. The effects of GDF-15 on the proliferation and cell death of HPMEC were studied using recombinant GDF-15 protein.ResultsGDF-15 expression was found to be increased in lung specimens from PAH patients, com-pared to normal lungs. GDF-15 was abundantly expressed in pulmonary vascular endothelial cells with a strong signal in the core of plexiform lesions. HPMEC responded with marked upregulation of GDF-15 to hypoxia and laminar shear stress. Apoptotic cell death of HPMEC was diminished, whereas HPMEC proliferation was either increased or decreased depending of the concentration of recombinant GDF-15 protein.ConclusionsGDF-15 expression is increased in PAH lungs and appears predominantly located in vascular endothelial cells. The expression pattern as well as the observed effects on proliferation and apoptosis of pulmonary endothelial cells suggest a role of GDF-15 in the homeostasis of endothelial cells in PAH patients.
Pulmonary arterial hypertension (PAH) is a debilitating disease with a high mortality rate. A hallmark of PAH is plexiform lesions (PLs), complex vascular formations originating from remodeled pulmonary arteries. The development and significance of these lesions have been debated and are not yet fully understood. Some features of PLs resemble neoplastic disorders, and there is a striking resemblance to glomeruloid-like lesions (GLLs) in glioblastomas. To further elucidate PLs, we used in situ methods, such as (fluorescent) IHC staining, three-dimensional reconstruction, and laser microdissection, followed by mRNA expression analysis. We generated compartment-specific expression patterns in the lungs of 25 patients (11 with PAH associated with systemic shunts, 6 with idiopathic PAH, and 8 controls) and GLLs from 5 glioblastomas. PLs consisted of vascular channels lined by a continuously proliferating endothelium and backed by a uniform myogenic interstitium. They also showed up-regulation of remodeling-associated genes, such as HIF1a, TGF-β1, VEGF-α, VEGFR-1/-2, Ang-1, Tie-2, and THBS1, but also of cKIT and sprouting-associated markers, such as NOTCH and matrix metalloproteinases. The cellular composition and signaling seen in GLLs in neural neoplasms differed significantly from those in PLs. In conclusion, PLs show a distinct cellular composition and microenvironment, which contribute to the plexiform phenotype and set them apart from other processes of vascular remodeling in patients with PAH. Neoplastic models of angiogenesis seem to be of limited use in further study of plexiform vasculopathy.
Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-β axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.