Epstein-Barr virus (EBV)-associated posttransplant smooth muscle tumors (PTSMT)are very rare complications. We aimed to provide a clinicopathological characterization which is based on our own case series (n = 5) as well as previously reported PTSMT cases (n = 63). Meta-analysis of PTSMT and molecular analysis of tumor cells from our cohort was performed. Most PTSMT developed in kidney-transplanted patients (n = 41/68, 60%). Liver/transplant liver was the main site of manifestation (n = 38/68, 56%). Tumors occurred after a median interval of 48 months (range 5-348) and developed earlier in children than in adults. Most tumors showed no marked cellular atypia, low mitosis rate and no tumor necrosis. Gene expression analysis of 20 EBV-related genes, including two microRNAs, revealed overexpression of MYC (p = 0.0357). Therapy was mainly based on surgical resection or reduced immunosuppression but no significant differences in overall survival were evident. Lower overall survival was associated with multiorgan involvement (n = 33/68, 48.5%) and particularly with intracranial PTSMT manifestation (n = 7/68, 10%; p < 0.02), but not transplant involvement (n = 11/68, 16%). In summary, PTSMT differ from conventional leiomyosarcomas by their lack of marked atypia, unusual sites of involvement and defining EBV association. Surgery and reduced immunosuppression show comparable clinical results and prognosis is associated with intracranial manifestation.
The rationale of α1-antitrypsin (AAT) augmentation therapy to treat progressive emphysema in AAT-deficient patients is based on inhibition of neutrophil elastase; however, the benefit of this treatment remains unclear. Here we show that clinical grade AAT (with elastase inhibitory activity) and a recombinant form of AAT (rAAT) without anti-elastase activity reduces lung inflammatory responses to LPS in elastase-deficient mice. WT and elastasedeficient mice treated with either native AAT or rAAT exhibited significant reductions in infiltrating neutrophils (23% and 68%), lavage fluid levels of TNF-α (70% and 80%), and the neutrophil chemokine KC (CXCL1) (64% and 90%), respectively. Lung parenchyma TNF-α, DNA damage-inducible transcript 3 and X-box binding protein-1 mRNA levels were reduced in both mouse strains treated with AAT; significantly lower levels of these genes, as well as IL-1β gene expression, were observed in lungs of AAT-deficient patients treated with AAT therapy compared with untreated patients. In vitro, LPS-induced cytokines from WT and elastasedeficient mouse neutrophils, as well as neutrophils of healthy humans, were similarly reduced by AAT or rAAT; human neutrophils adhering to endothelial cells were decreased by 60-80% (P < 0.001) with either AAT or rAAT. In mouse pancreatic islet macrophages, LPS-induced surface expression of MHC II, Toll-like receptor-2 and -4 were markedly lower (80%, P < 0.001) when exposed to either AAT or rAAT. Consistently, in vivo and in vitro, rAAT reduced inflammatory responses at concentrations 40-to 100-fold lower than native plasma-derived AAT. These data provide evidence that the anti-inflammatory and immunomodulatory properties of AAT can be independent of elastase inhibition.is the prototypic member of the serpin superfamily and one of the most abundant serine protease inhibitors in the circulation (1). As an acute-phase protein, AAT is thought to play an important role in limiting host-tissue injury triggered by proteases, particularly neutrophil elastase (NE). The clinical relevance of AAT is highlighted in individuals with inherited deficiency in circulating AAT, who have increased susceptibility to early-onset pulmonary emphysema, liver and pancreatic diseases, and in rare cases to panniculitis and vasculitis (2). It has been assumed that in AAT-deficiency the protease/antiprotease balance is shifted toward NE, which leads to extensive tissue damage, particularly in causing emphysema. Therefore, augmentation of circulating AAT was introduced 25 y ago to treat emphysema patients with severe PiZZ (Glu342Lys) AAT deficiency (3). Because clinical trials of AAT augmentation therapy use historical data as controls, the benefit of AAT therapy for PiZZ patients remains under debate (4-6), although in most cases therapy offers disease stabilization. The uncertainty surrounding the efficacy of augmentation therapy also reflects the incomplete understanding of the properties of the AAT protein, which can be affected by the isolation methods from plasma.Although the a...
Our data unravel a novel mechanism by which infection with Spn through Ply release induces progression of established lung fibrosis, which can be attenuated by protein-based vaccination of mice.
Chronic lung allograft dysfunction (CLAD) remains the major obstacle to long‐term survival following lung transplantation (LuTx). Morphologically CLAD is defined by obliterative remodelling of the small airways (bronchiolitis obliterans, BO) as well as a more recently described collagenous obliteration of alveoli with elastosis summarised as alveolar fibroelastosis (AFE). Both patterns are not restricted to pulmonary allografts, but have also been reported following haematopoietic stem cell transplantation (HSCT) and radio chemotherapy (RC). In this study we performed compartment‐specific morphological and molecular analysis of BO and AFE lesions in human CLAD (n = 22), HSCT (n = 29) and RC (n = 6) lung explants, utilising conventional histopathology, laser‐microdissection, PCR techniques and immunohistochemistry to assess fibrosis‐associated gene and protein expression. Three key results emerged from our analysis of fibrosis‐associated genes: (i) generally speaking, “BO is BO”. Despite the varying clinical backgrounds, the molecular characteristics of BO lesions were found to be alike in all groups. (ii) “AFE is AFE”. In all groups of patients suffering from restrictive changes to lung physiology due to AFE there were largely – but not absolutely ‐ identical gene expression patterns. iii) BO concomitant to AFE after LuTx is characterised by an AFE‐like molecular microenvironment, representing the only exception to (i). Additionally, we describe an evolutionary model for the AFE pattern: a non‐specific fibrin‐rich reaction to injury pattern triggers a misguided resolution attempt and eventual progression towards manifest AFE. Our data point towards an absence of classical fibrinolytic enzymes and an alternative fibrin degrading mechanism via macrophages, resulting in fibrous remodelling and restrictive functional changes. These data may serve as diagnostic adjuncts and help to predict the clinical course of respiratory dysfunction in LuTx and HSCT patients. Moreover, analysis of the mechanism of fibrinolysis and fibrogenesis may unveil potential therapeutic targets to alter the course of the eventually fatal lung remodelling.
Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-β axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.