Intractable neuropathic pain often results from nerve injury. One immediate event in damaged nerve is a sustained increase in spontaneous afferent activity, which has a well-established role in ongoing pain. Using two rat models of neuropathic pain, the CCI and SNI models, we show that local, temporary nerve blockade of this afferent activity permanently inhibits the subsequent development of both thermal hyperalgesia and mechanical allodynia. Timing is critical-the nerve blockade must last at least 3-5 days and is effective if started immediately after nerve injury, but not if started at 10 days after injury when neuropathic pain is already established. Effective nerve blockade also prevents subsequent development of spontaneous afferent activity measured electrophysiologically. Similar results were obtained in both pain models, and with two blockade methods (200 mg of a depot form bupivacaine at the injury site, or perfusion of the injured nerve just proximal to the injury site with TTX). These results indicate that early spontaneous afferent fiber activity is the key trigger for the development of pain behaviors, and suggest that spontaneous activity may be required for many of the later changes in the sensory neurons, spinal cord, and brain observed in neuropathic pain models. Many pre-clinical and clinical studies of pre-emptive analgesia have used much shorter duration of blockade, or have not started immediately after the injury. Our results suggest that effective preemptive analgesia can be achieved only when nerve block is administered early after injury and lasts several days.
Amphetamine-induced motor behaviors, i.e., locomotor and stereotypic activities, were simultaneously characterized in C57BL/6 mice, a strain commonly used for genetic studies. Our findings show relatively high levels of focused activities in drug-naïve C57BL/6 mice, confirming the lively nature of this mouse strain. Acute amphetamine induced a dose-dependent, bimodal response: locomotion predominated at lower doses of amphetamine and was gradually displaced by stereotypic behavior as dose and time increased. The sum total of both behavioral activities increased with amphetamine dose, supporting the notion that amphetamine-induced locomotion and stereotypy form a continuum. These data provide a basis for using C57BL/6 mice as a strain to study the molecular and cellular mechanisms underlying psychostimulant effects, drug addiction and psychotic disorders.
We hypothesized that human ocular surface squamous neoplasia (OSSN) may result from the continuous growth stimulation of corneal epithelial progenitor cells. In the present study, we analyzed the effects of excess fibroblast growth factor-7 (FGF-7) on both the proliferation and differentiation of corneal epithelium in a novel Krt12-rtTA/tet-O-FGF-7 double transgenic mouse model in which cornea-specific FGF-7 overexpression is achieved by doxycycline (Dox) treatment. When such adult mice were exposed to Dox, they exhibited epithelial hyperplasia with increases in phospho-extracellular signal-regulated kinase 1/2-, nuclear beta-catenin-, and 5-bromo-2'-deoxyuridine-labeled cells and altered keratin (K) 14 (K14) expression pattern, a normal K12 expression pattern, and the normal absence of K10. Hyperplasia of the adult cornea was fully reversible 2 weeks after the removal of Dox from chow. In contrast, double transgenic embryos that were exposed to Dox from embryonic day 0.5 to postnatal day 21 developed papillomatous tumors in the cornea, resembling human OSSN, and ectopic gland-like structures in the limbus, accompanied by the down-regulation of K12 and the up-regulation of K14, Pax6, and p63. These epithelial anomalies observed in young experimental mice were not fully resolved after the termination of Dox induction. Taken together, Krt12-rtTA/tet-O-FGF-7 mice may be a suitable animal model for the study of the molecular and cellular mechanisms of human OSSN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.