Amphetamine-induced motor behaviors, i.e., locomotor and stereotypic activities, were simultaneously characterized in C57BL/6 mice, a strain commonly used for genetic studies. Our findings show relatively high levels of focused activities in drug-naïve C57BL/6 mice, confirming the lively nature of this mouse strain. Acute amphetamine induced a dose-dependent, bimodal response: locomotion predominated at lower doses of amphetamine and was gradually displaced by stereotypic behavior as dose and time increased. The sum total of both behavioral activities increased with amphetamine dose, supporting the notion that amphetamine-induced locomotion and stereotypy form a continuum. These data provide a basis for using C57BL/6 mice as a strain to study the molecular and cellular mechanisms underlying psychostimulant effects, drug addiction and psychotic disorders.
The principal polyunsaturated fatty acid acids found in brain, arachidonic acid (AA) and docosahexaenoic acid (DHA), preferentially accumulate in synaptic membranes. Although neurochemical studies have found that dietary-induced deficits in rat brain DHA composition significantly alter mesocorticolimbic dopamine (DA) neurotransmission, its impact on DA-mediated behavior remains poorly understood. In the present study, we determined the effects of dietary-induced deficits in brain DHA composition on amphetamine (AMPH)-induced locomotor activity and sensitization in DBA/2J mice, an inbred strain previously found to be hyporesponsive to AMPH, as well as monoamine concentrations in the PFC and ventral striatum following the AMPH challenge. Chronic dietary omega-3 fatty acid deficiency significantly decreased PFC (-25%) and ventral striatum (-20%) DHA composition, increased PFC (+7%) and ventral striatum (+6%) AA composition, and increased the AA:DHA ratio in PFC (+30%) and ventral striatum (+24%). The development and expression of AMPH-induced sensitization was significantly increased in DHA-deficient mice, whereas novelty- and acute AMPH-induced locomotor activity were not altered. DHA-deficient mice exhibited significantly greater ventral striatum, but not PFC, DA and DA metabolite concentrations following the AMPH challenge, whereas serotonin and noradrenalin concentrations were not altered. Ventral striatum AA composition and the AA:DHA ratio were both positively correlated with DA concentrations, and both ventral striatum AA composition and DA concentrations were positively correlated with locomotor activity during the preceding AMPH challenge. These results demonstrate that dietary-induced brain DHA deficiency, and associated elevation in the AA:DHA ratio, augment AMPH-induced sensitization in DBA/2J mice, and that this augmented response is associated with selective alterations in the mesolimbic DA pathway.
Previous reports have identified greater sensitivity to the locomotor-stimulating, sensitizing, and reinforcing effects of amphetamine in inbred C57BL/6J mice relative to inbred DBA/2J mice. The dopamine D3 receptor (D3R) plays an inhibitory role in the regulation of rodent locomotor activity, and exerts inhibitory opposition to D1 receptor (D1R)-mediated signaling. Based on these observations, we investigated D3R expression and D3R-mediated locomotor-inhibitory function, as well as D1R binding and D1R-mediated locomotor-stimulating function, in C57BL/6J and DBA/2J mice. C57BL/6J mice exhibited lower D3R binding density (-32%) in the ventral striatum (nucleus accumbens/islands of Calleja), lower D3R mRNA expression (-26%) in the substantia nigra/ventral tegmentum, and greater D3R mRNA expression (+40%) in the hippocampus, relative to DBA/2J mice. There were no strain differences in DR3 mRNA expression in the ventral striatum or prefrontal cortex, nor were there differences in D1R binding in the ventral striatum. Behaviorally, C57BL/6J mice were less sensitive to the locomotor-inhibitory effect of the D3R agonist PD128907 (10 microg/kg), and more sensitive to the locomotor-stimulating effects of novelty, amphetamine (1 mg/kg), and the D1R-like agonist +/- -1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8,-diol hydrochloride (SKF38393) (5-20 mg/kg) than DBA/2J mice. While the selective D3R antagonist N-(4-[4-{2,3-dichlorphenyl}-1 piperazinyl]butyl)-2-fluorenylcarboxamide (NGB 2904) (0.01-1.0 mg/kg) augmented novelty-, amphetamine-, and SKF38393-induced locomotor activity in DBA/2J mice, it reduced novelty-induced locomotor activity in C57BL/6J mice. Collectively, these results demonstrate that C57BL/6J mice exhibit less D3R-mediated inhibitory function relative to DBA/2J mice, and suggest that reduced D3R-mediated inhibitory function may contribute to heightened sensitivity to the locomotor-stimulating effects of amphetamine in the C57BL/6J mouse strain. Furthermore, these data demonstrate that comparisons between C57BL/6J and DBA/2J mouse strains provide a model for elucidating the molecular determinants of genetic influence on D3R function.
Dopamine D3 receptors have the highest dopamine affinity of all dopamine receptors, and may thereby regulate dopamine signaling mediated by volume transmission. Changes in D3 receptor isoform expression may alter D3 receptor function, however little is known regarding coordination of D3 isoform expression in response to perturbations in dopaminergic stimulation. In order to determine the effects of dopamine receptor stimulation and blockade on D3 receptor alternative splicing, we determined D3 and D3nf isoform mRNA expression following treatment with the D3 receptor antagonist NGB 2904, and the indirect dopamine agonist amphetamine. Expression of tyrosine hydroxylase (TH) mRNA, the rate-limiting enzyme in dopamine synthesis, was also determined. The D3/D3nf mRNA expression ratio was increased in ventral striatum, prefrontal cortex and hippocampus six hours following D3 antagonist NGB 2904 treatment, and remained persistently elevated at 24 hours in hippocampus and substantia nigra/ ventral tegmentum. D3 mRNA decreased 65% and D3nf mRNA expression decreased 71% in prefrontal cortex 24 hours following amphetamine treatment, however these changes did not reach statistical significance. TH mRNA expression was unaffected by D3 antagonist NGB 2904, but was elevated by amphetamine in ventral striatum, hippocampus and prefrontal cortex. These findings provide evidence for an adaptive response to altered D3 receptor stimulation involving changes in D3 receptor alternative splicing. Additionally, these data suggest D3 autoreceptor regulation of dopamine synthesis does not involve regulation of TH mRNA expression. Finally, the observation of regulated TH mRNA expression in dopamine terminal fields provides experimental support for the model of local control of mRNA expression in adaptation to synaptic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.