Purpose To use a histologic approach to obtain dimensional and morphologic information on the cornea in three commonly used strains of mice. Methods Adult mice (three each of 129/SVJ, C57BL/6, and BALB/c) were euthanatized, and the eyes were enucleated, immersed in 2% glutaraldehyde fixative, and prepared for light and transmission electron microscopy. The full corneal, epithelial, stromal, and posterior limiting lamina (PLL) with endothelium thicknesses were measured at the same location centrally and peripherally. Results All three strains showed a statistically significant (P0.001) decrease in overall thickness in the peripheral compared with the central cornea. The decrease was due to a reduced thickness of both the epithelium and the stroma. The stroma and epithelium contributed to approximately two thirds and one third of the total corneal thickness, respectively. The epithelium had the classic stratified layout and consisted of 13.00 ± 1.41 layers centrally versus 10.33 ± 1.37 peripherally. Some adaptation of stromal tissue was found immediately adjacent to the epithelial basement membrane, but a clearly defined anterior limiting lamina did not exist. The stroma was organized into lamellae but lacked the anterior branching and interweaving reported in humans and had unmyelinated nerve fibers within micrometers of the endothelium. The PLL was 2.17 ± 0.3 μm thick and was divided into pre- and postnatal layers, with striated bodies in the postnatal portion. Conclusions This study demonstrated that in the three strains of mice examined, the cornea becomes significantly thinner toward the periphery. Dimensionally, proportionally, and anatomically the three strains used appeared to be similar. However, morphologic differences were observed compared with other mammals, and awareness of these differences is important when using the mouse as an animal model applicable to the human.
This study demonstrated that conjunctival goblet cells are IL-13 responsive cells that produce factors known to maintain epithelial barrier, stimulate mucin production, and modulate immune response in nonocular mucosa when treated with IL-13. The functional significance of IL-13-stimulated factors remains to be determined.
Goblet cells (GCs) are specialized secretory cells that produce mucins and a variety of other proteins. Significant conjunctival GC loss occurs in both experimental dry eye models and patients with keratoconjunctivitis sicca due to the induction of interferon (IFN)-γ. With the use of a primary murine culture model, we found that GCs are highly sensitive to IFN-γ with significantly reduced proliferation and altered structure with low concentrations. GC cultures treated with IFN-γ have increased gene expression of Muc2 and Muc5AC but do not express these mucin glycoproteins. We hypothesized that IFN-γ induces endoplasmic reticulum stress and the unfolded protein response (UPR) in GCs. Cultures treated with IFN-γ increased expression of UPR-associated genes and proteins. Increased GRP78 and sXBP1 expression was found in experimental dry eye and Sjögren syndrome models and was GC specific. Increased GRP78 was also found in the conjunctiva of patients with Sjögren syndrome at the gene and protein levels. Treatment with dexamethasone inhibited expression of UPR-associated genes and increased mucin production. These results indicate that induction of UPR by IFN-γ is an important cause of GC-associated mucin deficiency observed in aqueous-deficient dry eye. Therapies to block the effects of IFN-γ on the metabolically active endoplasmic reticulum in these cells might enhance synthesis and secretion of the protective GC mucins on the ocular surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.