The use of fiber-reinforced lightweight materials in the field of electromobility offers great opportunities to increase the range of electric vehicles and also enhance the functionality of the components themselves. In order to meet the demand for a high number of variants, flexible production technologies are required which can quickly adapt to different component variants and thereby avoid long setup times of the required production equipment. By applying the formflexible process of automated tape laying (ATL), it is possible to build lightweight components in a variant-flexible way. Unidirectional (UD) tapes are often used to build up lightweight structures according to a predefined load path. However, the UD tape which is used to build the components is particularly sensitive to temperature fluctuations due to its low thickness. Temperature fluctuations within the production sites as well as the warming of the tape layer and the deposit surface over longer process times have an impact on the heat flow which is infused to the tape and make an adaptive control of the tape heating indispensable. At present, several model-based control strategies are available. However, these strategies require a comprehensive understanding of the ATL system and its environment and are therefore difficult to design. With the possibility of model-free reinforcement learning, it is possible to build a temperature control system that learns the common dependencies of both the process being used and its operating environment, without the need to rely on a complete understanding of the physical interrelationships. In this paper, a reinforcement learning approach based on the deep deterministic policy gradient (DDPG) algorithm is presented, with the aim to control the temperature of an ATL endeffector based on infrared emitters. The algorithm was adapted to the thermal inertia of the system and trained in a real process environment. With only a small amount of training data, the trained DDPG agent was able to reliably maintain the ATL process temperatures within a specified tolerance range. By applying this technique, UD tape can be deposited at a consistent process temperature over longer process times without the need for a cooling system. Reducing process complexity can help to increase the prevalence of lightweight components and thus contribute to lower energy consumption of electric vehicles.
Billions of packages are automatically handled in warehouses every year. The gripping systems are, however, most often oversized in order to cover a large range of different carton types, package masses, and robot motions. In addition, a targeted optimization of the process parameters with the aim of reducing the oversizing requires prior knowledge, personnel resources, and experience. This paper investigates whether the energy-efficiency in vacuum-based package handling can be increased without the need for prior knowledge of optimal process parameters. The core method comprises the variation of the input pressure for the vacuum ejector, compliant to the robot trajectory and the resulting inertial forces at the gripper-object-interface. The control mechanism is trained by applying reinforcement learning with a deep Q-agent. In the proposed use case, the energy-efficiency can be increased by up to 70% within a few hours of learning. It is also demonstrated that the generalization capability with regard to multiple different robot trajectories is achievable. In the future, the industrial applicability can be enhanced by deployment of the deep Q-agent in a decentral system, to collect data from different pick and place processes and enable a generalizable and scalable solution for energy-efficient vacuum-based handling in warehouse automation.
Millionen Pakete werden jährlich in Logistikzentren gehandhabt. Um die große Vielfalt unterschiedlicher Kartons abdecken zu können, kommen meist Standard-Greifsysteme mit leistungsfähigen Vakuumejektoren zum Einsatz, die durchgehend bei hohem Überdruck betrieben werden. So wird in den meisten Fällen mehr Energie verbraucht, als benötigt wird. Durch den Einsatz von Machine Learning kann das manuelle, erfahrungsbasierte Einstellen der Prozessparameter eliminiert und Energieeinsparungen von bis zu 70 % erzielt werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.