The risks of novel technologies, such as nano(bio)technology cannot be fully assessed due to the existing uncertainties surrounding their introduction into society. Consequently, the introduction of innovative technologies can be conceptualised as a societal experiment, which is a helpful approach to evaluate moral acceptability. This approach is illustrated with the marketing of sunscreens containing nano-sized titanium dioxide (TiO2) particles. We argue that the marketing of this TiO2 nanomaterial in UV protective cosmetics is ethically undesirable, since it violates four reasonable moral conditions for societal experimentation (absence of alternatives, controllability, limited informed consent, and continuing evaluation). To remedy the current way nano-sized TiO2 containing sunscreens are utilised, we suggest five complementing actions (closing the gap, setup monitoring tools, continuing review, designing for safety, and regulative improvements) so that its marketing can become more acceptable.
Phosphate removal to ecologically desired levels of <0.01 mg/L is currently dependent on large overdosing of metal salts and production of large amounts of chemical sludge. The present study focuses on the development and performance of a new bionanotechnological phosphate removal system, based on sorption of oxoanions by nanoscale ferric iron particles stabilized within thermostable ferritin from the hyperthermophilic archaeon Pyrococcus furiosus (PfFrt). Laboratory studies show that this thermostable protein nanocage has fast kinetics for phosphate uptake at very low concentrations by catalytic oxidation of iron. In this study we demonstrate essentially complete phosphate removal with a capacity of approximately 11 mg/g PfFrt. Ferritin can easily be immobilized and is amenable to fast and efficient regeneration, making recovery of phosphate possible. The phosphate removal process with PfFrt is, due to its high affinity, able to reach ecologically desired phosphate levels and in addition it is cost competitive with existing techniques.
This paper presents and evaluates two advanced courses organised in Oxford as part of the European project Nanobio-RAISE and suggests using their format to encourage multidisciplinary engagement between nanoscientists and nanoethicists. Several nanoethicists have recently identified the need for ‘better’ ethics of emerging technologies, arguing that ethical reflection should become part and parcel of the research and development (R&D) process itself. Such new forms of ethical deliberation, it is argued, transcend traditional disciplinary boundaries and require the active engagement and involvement of both nanoethicists and nanoscientists with the broader issues surrounding technological developments. Whereas significant research efforts into multi- and interdisciplinary collaborations during R&D processes are now emerging, opportunities for encouraging multidisciplinary engagement through education have remained relatively underexplored. This paper argues that educational programmes could be a natural extension of ongoing collaborative research efforts ‘in the lab’ and analyses how the Nanobio-RAISE courses could be used as a model for course development. In addition to exploring how the elements that were conducive to multidisciplinary engagement in this course could be preserved in future courses, this paper suggests shifting the emphasis from public communication towards ethical deliberation. Further course work could thus build capacity among both nanoscientists and nanoethicists for doing ‘better’ nanoethics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.