The aim of this paper is twofold. First, we show that a certain concatenation of a proximity operator with an affine operator is again a proximity operator on a suitable Hilbert space. Second, we use our findings to establish so-called proximal neural networks (PNNs) and stable tight frame proximal neural networks. Let $$\mathcal {H}$$ H and $$\mathcal {K}$$ K be real Hilbert spaces, $$b \in \mathcal {K}$$ b ∈ K and $$T \in \mathcal {B} (\mathcal {H},\mathcal {K})$$ T ∈ B ( H , K ) a linear operator with closed range and Moore–Penrose inverse $$T^\dagger $$ T † . Based on the well-known characterization of proximity operators by Moreau, we prove that for any proximity operator $$\mathrm {Prox}:\mathcal {K}\rightarrow \mathcal {K}$$ Prox : K → K the operator $$T^\dagger \, \mathrm {Prox}( T \cdot + b)$$ T † Prox ( T · + b ) is a proximity operator on $$\mathcal {H}$$ H equipped with a suitable norm. In particular, it follows for the frequently applied soft shrinkage operator $$\mathrm {Prox}= S_{\lambda }:\ell _2 \rightarrow \ell _2$$ Prox = S λ : ℓ 2 → ℓ 2 and any frame analysis operator $$T:\mathcal {H}\rightarrow \ell _2$$ T : H → ℓ 2 that the frame shrinkage operator $$T^\dagger \, S_\lambda \, T$$ T † S λ T is a proximity operator on a suitable Hilbert space. The concatenation of proximity operators on $$\mathbb R^d$$ R d equipped with different norms establishes a PNN. If the network arises from tight frame analysis or synthesis operators, then it forms an averaged operator. In particular, it has Lipschitz constant 1 and belongs to the class of so-called Lipschitz networks, which were recently applied to defend against adversarial attacks. Moreover, due to its averaging property, PNNs can be used within so-called Plug-and-Play algorithms with convergence guarantee. In case of Parseval frames, we call the networks Parseval proximal neural networks (PPNNs). Then, the involved linear operators are in a Stiefel manifold and corresponding minimization methods can be applied for training of such networks. Finally, some proof-of-the concept examples demonstrate the performance of PPNNs.
Learning neural networks using only a small amount of data is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows. Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images. The subsequent reconstruction method is completely unsupervised and the same regularizer can be used for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our variational model is indeed a MAP approach. Our model can be generalized to conditional patchNRs, if additional supervised information is available. Numerical examples for low-dose CT, limited-angle CT and superresolution of material images demonstrate that our method provides high quality results among unsupervised methods, but requires only few data.
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
In this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν, the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case $\nu \rightarrow \infty $ ν → ∞ , for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν, the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν, we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν. We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.