Disambiguating named entities in natural language texts maps ambiguous names to canonical entities registered in a knowledge base such as DBpedia, Freebase, or YAGO. Knowing the specific entity is an important asset for several other tasks, e.g. entity-based information retrieval or higher-level information extraction. Our approach to named entity disambiguation makes use of several ingredients: the prior probability of an entity being mentioned, the similarity between the context of the mention in the text and an entity, as well as the coherence among the entities. Extending this method, we present a novel and highly efficient measure to compute the semantic coherence between entities. This measure is especially powerful for long-tail entities or such entities that are not yet present in the knowledge base. Reliably identifying names in the input text that are not part of the knowledge base is the current focus of our work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.