COVID‐19, caused by SARS‐CoV‐2, has emerged as a global pandemic. While immune responses of the adaptive immune system have been in the focus of research, the role of NK cells in COVID‐19 remains less well understood. Here, we characterized NK cell‐mediated SARS‐CoV‐2 antibody‐dependent cellular cytotoxicity (ADCC) against SARS‐CoV‐2 spike‐1 (S1) and nucleocapsid (NC) protein. Serum samples from SARS‐CoV‐2 resolvers induced significant CD107a‐expression by NK cells in response to S1 and NC, while serum samples from SARS‐CoV‐2‐negative individuals did not. Furthermore, serum samples from individuals that received the BNT162b2 vaccine induced strong CD107a expression by NK cells that increased with the second vaccination and was significantly higher than observed in infected individuals. As expected, vaccine‐induced responses were only directed against S1 and not against NC protein. S1‐specific CD107a responses by NK cells were significantly correlated to NK cell‐mediated killing of S1‐expressing cells. Interestingly, screening of serum samples collected prior to the COVID‐19 pandemic identified two individuals with cross‐reactive antibodies against SARS‐CoV‐2 S1, which also induced degranulation of NK cells. Taken together, these data demonstrate that antibodies induced by SARS‐CoV‐2 infection and anti‐SARS‐CoV‐2 vaccines can trigger significant NK cell‐mediated ADCC activity, and identify some cross‐reactive ADCC‐activity against SARS‐CoV‐2 by endemic coronavirus‐specific antibodies.
Human adenoviruses (HAdVs) are a major cause for disease in children, in particular after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Currently, effective therapies for HAdV infections in immunocompromised hosts are lacking. To decipher immune recognition of HAdV infection and determine new targets for immunemediated control, we used an HAdV infection 3D organoid system, based on primary human intestinal epithelial cells. HLA-F, the functional ligand for the activating NK cell receptor KIR3DS1, was strongly up-regulated and enabled enhanced killing of HAdV5-infected cells in organoids by KIR3DS1 + NK cells. In contrast, HLA-A and HLA-B were significantly down-regulated in HAdV5-infected organoids in response to adenoviral E3/glycoprotein19K, consistent with evasion from CD8 + T cells. Immunogenetic analyses in a pediatric allo-HSCT cohort showed a reduced risk to develop severe HAdV disease and faster clearance of HAdV viremia in children receiving KIR3DS1 + /HLA-Bw4 + donor cells compared with children receiving non-KIR3DS1 + /HLA-Bw4 + cells. These findings identify the KIR3DS1/ HLA-F axis as a new target for immunotherapeutic strategies against severe HAdV disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.