The 1st cycle Coulombic efficiency (CE) of LiNi1/3Co1/3Mn1/3O2 (NCM) at 4.6 V vs. Li/Li(+) has been extensively investigated in NCM/Li half cells. It could be proven that the major part of the observed overall specific capacity loss (in total 36.3 mA h g(-1)) is reversible and induced by kinetic limitations, namely an impeded lithiation reaction during discharge. A measure facilitating the lithiation reaction, i.e. a constant potential (CP) step at the discharge cut-off potential, results in an increase in specific discharge capacity of 22.1 mA h g(-1). This capacity increase during the CP step could be proven as a relithiation process by Li(+) content determination in NCM via an ICP-OES measurement. In addition, a specific capacity loss of approx. 4.2 mA h g(-1) could be determined as an intrinsic reaction to the NCM cathode material at room temperature (RT). In total, less than 10.0 mA h g(-1) (=28% of the overall capacity loss) can be attributed to irreversible reactions, mainly to irreversible structural changes of NCM. Thus, the impact of parasitic reactions, such as oxidative electrolyte decomposition, on the irreversible capacity is negligible and could also be proven by on-line MS. As a consequence, the determination of the amount of extracted Li(+) ("Li(+) extraction ratio") so far has been incorrect and must be calculated by the charge capacity (=delithiation amount) divided by the theoretical capacity. In a NCM/graphite full cell the relithiation amount during the constant voltage (CV) step is smaller than in the half cell, due to irreversible Li(+) loss at graphite.
Fast charging is considered to be a key requirement for widespread economic success of electric vehicles. Current lithium‐ion batteries (LIBs) offer high energy density enabling sufficient driving range, but take considerably longer to recharge than traditional vehicles. Multiple properties of the applied anode, cathode, and electrolyte materials influence the fast‐charging ability of a battery cell. In this review, the physicochemical basics of different material combinations are considered in detail, identifying the transport of lithium inside the electrodes as the crucial rate‐limiting steps for fast‐charging. Lithium diffusion within the active materials inherently slows down the charging process and causes high overpotentials. In addition, concentration polarization by slow lithium‐ion transport within the electrolyte phase in the porous electrodes also limits the charging rate. Both kinetic effects are responsible for lithium plating observed on graphite anodes. Conclusions drawn from potential and concentration profiles within LIB cells are complemented by extensive literature surveys on anode, cathode, and electrolyte materials—including solid‐state batteries. The advantages and disadvantages of typical LIB materials are analyzed, resulting in suggestions for optimum properties on the material and electrode level for fast‐charging applications. Finally, limitations on the cell level are discussed briefly as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.