Reading requires the interaction between multiple cognitive processes situated in distant brain areas. This makes the study of functional brain connectivity highly relevant for understanding developmental dyslexia. We used seed-voxel correlation mapping to analyse connectivity in a left-hemispheric network for task-based and resting-state fMRI data. Our main finding was reduced connectivity in dyslexic readers between left posterior temporal areas (fusiform, inferior temporal, middle temporal, superior temporal) and the left inferior frontal gyrus. Reduced connectivity in these networks was consistently present for 2 reading-related tasks and for the resting state, showing a permanent disruption which is also present in the absence of explicit task demands and potential group differences in performance. Furthermore, we found that connectivity between multiple reading-related areas and areas of the default mode network, in particular the precuneus, was stronger in dyslexic compared with nonimpaired readers.
This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal (OT) region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.