Abstract. In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. The GAG model (Generation of Ammonia from Grazing) is capable of simulating the TAN (total ammoniacal nitrogen) and the water content of the soil under a urine patch and also soil pH dynamics. The model tests suggest that ammonia volatilization from a urine patch can be affected by the possible restart of urea hydrolysis after a rain event as well as CO2 emission from the soil. The vital role of temperature in NH3 exchange is supported by our model results; however, the GAG model provides only a modest overall temperature dependence in total NH3 emission compared with the literature. This, according to our findings, can be explained by the higher sensitivity to temperature close to urine application than in the later stages and may depend on interactions with other nitrogen cycling processes. In addition, we found that wind speed and relative humidity are also significant influencing factors. Considering that all the input parameters can be obtained for larger scales, GAG is potentially suitable for field and regional scale application, serving as a tool for further investigation of the effects of climate change on ammonia emissions and deposition.
Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH<sub>3</sub>) emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 subsequent days. Daily-integrated emission rates peaked on Day 3 of the experiment (last day of cattle presence) and declined steadily for five days thereafter. Urine patches were the dominant sources for these emissions. On Day 9, a secondary emissions peak occurred, with dung pats likely to be the main sources. This interpretation is based on simultaneous observations of the pH evolution in urine patches and dung pats created next to the circular plot. Feed and dung samples were analysed to estimate the amounts of nitrogen (N) ingested and excreted. Total N volatilised as NH<sub>3</sub> was 19.8 (± 0.9)% of N intake and 22.4 (± 1.3)% of N excreted. The bimodal shape of the emissions time series allowed to infer separate estimates for volatilisation from urine and dung, respectively, with the result that urine accounted for 88.6 (± 2.6)% of the total NH<sub>3</sub> emissions. The emissions from urine represented 25.5 (± 2.0)% of the excreted urine-N, while the emissions from dung amounted to 11.6 (± 2.7)% of the deposited dung-N. Emissions from dung may have continued after Day 13 but were not resolved by the measurement technique. A simple resistance model shows that the magnitude of the emissions from dung is controlled by the resistance of the dung crust
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.