Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH<sub>3</sub>) emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 subsequent days. Daily-integrated emission rates peaked on Day 3 of the experiment (last day of cattle presence) and declined steadily for five days thereafter. Urine patches were the dominant sources for these emissions. On Day 9, a secondary emissions peak occurred, with dung pats likely to be the main sources. This interpretation is based on simultaneous observations of the pH evolution in urine patches and dung pats created next to the circular plot. Feed and dung samples were analysed to estimate the amounts of nitrogen (N) ingested and excreted. Total N volatilised as NH<sub>3</sub> was 19.8 (± 0.9)% of N intake and 22.4 (± 1.3)% of N excreted. The bimodal shape of the emissions time series allowed to infer separate estimates for volatilisation from urine and dung, respectively, with the result that urine accounted for 88.6 (± 2.6)% of the total NH<sub>3</sub> emissions. The emissions from urine represented 25.5 (± 2.0)% of the excreted urine-N, while the emissions from dung amounted to 11.6 (± 2.7)% of the deposited dung-N. Emissions from dung may have continued after Day 13 but were not resolved by the measurement technique. A simple resistance model shows that the magnitude of the emissions from dung is controlled by the resistance of the dung crust
The objective of this study was to investigate the relationship between nitrogen isotopic fractionation (δ(15)N) and nitrogen-use efficiency (milk nitrogen/nitrogen intake; NUE) in pasture-fed dairy cows supplemented with increasing levels of urea to mimic high rumen degradable protein pastures in spring. Fifteen cows were randomly assigned to freshly cut pasture and either supplemented with 0, 250, or 336 g urea/d. Feed, milk, and plasma were analyzed for δ(15)N, milk and plasma for urea nitrogen concentration, and plasma for ammonia concentration. Treatment effects were tested using ANOVA and relationships between variables were established by linear regression. Lower dry matter intake (P = 0.002) and milk yield (P = 0.002) occurred with the highest urea supplementation (336 g urea/d) compared with the other two treatments. There was a strong linear relationship between milk δ(15)N - feed δ(15)N and NUE: [NUE (%) = 58.9 - 10.17 × milk δ(15)N - feed δ(15)N (‰) (r(2) = 0.83, P < 0.001, SE = 1.67)] and between plasma δ(15)N - feed δ(15)N and NUE: [NUE (%) = 52.4 - 8.61 × plasma δ(15)N - feed δ(15)N (‰) (r(2) = 0.85, P < 0.001, SE = 1.56)] . This study confirmed the potential use of δ(15)N to predict NUE in cows consuming different levels of rumen degradable protein.
Offering feed supplements to grazing dairy cows results in substitution of pasture; however, previous data indicate that the time at which concentrate supplements are offered might affect the level of substitution. These data indicated that cows grazed more intensely presunset, regardless of the amount of supplement offered. It was, therefore, hypothesized that substitution rate would be less, and response to supplement greater if cows received their supplement at the p.m. rather than the a.m. milking. Forty-eight multiparous, nonpregnant, Holstein-Friesian cows, approximately 60 d in milk, were randomly allocated to 1 of 3 treatments in an incomplete crossover arrangement. Treatments were pasture only, pasture + 3 kg of concentrate supplement dry matter (DM) offered during the a.m. milking (AM-SUP), and pasture + 3 kg of concentrate supplement DM offered during the p.m. milking (PM-SUP). Time spent grazing and calculated pasture DM intake did not differ between the AM-SUP and PM-SUP cows. However, a tendency (0.18 kg of milk/kg of concentrate DM) was observed for an increased marginal milk response (kg of milk/kg of DM supplement) for the AM-SUP cows when compared with PM-SUP cows. Irrespective of when supplements were offered, supplementation reduced total grazing time by a similar amount, and the reduction in time spent grazing was evident throughout the day. Cows in the PM-SUP group ruminated for longer and cows in the AM-SUP group spent more time idle compared with the pasture only groups. Cows in the AM-SUP group grazed for less time during the major a.m. grazing bout following a.m. milking compared with PM-SUP cows; in comparison, the major p.m. grazing bout following p.m. milking was unaffected by supplementation. The results indicated possible improvements in marginal milk response to supplements from altering the timing of delivery.
Twelve cattle were kept for three days in a circular area of 16 m radius on short pasture and fed with freshly-cut pasture. Ammonia (NH<sub>3</sub>) emissions from the urine and dung excreted by the cattle were measured with a micrometeorological mass-balance method, during the cattle presence and for 10 subsequent days. Daily-integrated emission rates peaked on day 3 of the experiment (last day of cattle presence) and declined steadily for five days thereafter. Urine patches were the dominant sources for these emissions. On day 9, a secondary emissions peak occurred, with dung pats likely to be the main sources. This interpretation is based on simultaneous observations of the pH evolution in urine patches and dung pats created next to the circular plot. Feed and dung samples were analysed to estimate the amounts of nitrogen (N) ingested and excreted. Total N volatilised as NH<sub>3</sub> was 19.8 (±0.9) % of N intake and 22.4 (±1.3) % of N excreted. The bimodal shape of the emissions time series allowed to infer separate estimates for volatilisation from urine and dung, respectively, with the result that urine accounted for 88.6 (±2.6) % of the total NH<sub>3</sub> emissions. The emissions from urine represented 25.5 (±2.0) % of the excreted urine-N, while the emissions from dung amounted to 11.6 (±2.7) % of the deposited dung-N. Emissions from dung may have continued after day 13 but were not resolved by the measurement technique. A simple resistance model shows that the magnitude of the emissions from dung is controlled by the resistance of the dung crust
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.