The oral perception of fat has traditionally been considered to rely mainly on texture and olfaction, but recent findings suggest that taste may also play a role in the detection of long chain fatty acids. The two G-protein coupled receptors GPR40 (Ffar1) and GPR120 are activated by medium and long chain fatty acids. Here we show that GPR120 and GPR40 are expressed in the taste buds, mainly in type II and type I cells, respectively. Compared with wild-type mice, male and female GPR120 knock-out and GPR40 knock-out mice show a diminished preference for linoleic acid and oleic acid, and diminished taste nerve responses to several fatty acids. These results show that GPR40 and GPR120 mediate the taste of fatty acids.
The taste system, made up of taste receptor cells clustered in taste buds at the surface of the tongue and the soft palate, plays a key role in the decision to ingest or reject food and thereby is essential in protecting organisms against harmful toxins and in selecting the most appropriate nutrients. To determine if a similar chemosensory system exists in the gastrointestinal tract, we used immunohistochemistry and real-time polymerase chain reaction (PCR) to investigate which taste-signaling molecules are expressed in the intestinal mucosa. The PCR data showed that T1r1, T1r2, T1r3, alpha-gustducin, phospholipase Cbeta2 (PLCbeta2), and Trpm5 are expressed in the stomach, small intestine, and colon of mice and humans, with the exception of T1r2, which was not detected in the mouse and human stomach or in the mouse colon. Using transgenic mice expressing enhanced green fluorescent protein under the control of the Trpm5 promoter, we found colocalization of Trpm5 and alpha-gustducin in tufted cells at the surface epithelium of the colon, but these cells did not express T1r3 or PLCbeta2. In the duodenal glands, 43%, 33%, and 38% of Trpm5-expressing cells also express PLCbeta2, T1r3, or alpha-gustducin, respectively. The duodenal gland cells that coexpress PLCbeta2 and Trpm5 morphologically resemble enteroendocrine cells. We found a large degree of colocalization of Trpm5, alpha-gustducin, T1r1, and T1r3 in tufted cells of the duodenal villi, but these cells rarely expressed PLCbeta2. The data suggest that these duodenal cells are possibly involved in sensing amino acids.
To determine the role in chemosensation of intestinal solitary cells that express taste receptors and Trpm5, we carried out a microarray study of the transcriptome of FACS-sorted transgenic mouse intestinal cells expressing enhanced green fluorescent protein (eGFP) under the control of the Trpm5 promoter and compared it with that of intestinal cells that do not express eGFP. The findings of the study are: 1) Morphology and expression of markers show that most eGFP+ cells are brush cells. 2) The majority of proteins known to be involved in taste signal transduction are expressed in the eGFP+ cells, although the isoforms are not always the same. 3) eGFP+ cells express pre- and postsynaptic markers and nerves are often found in close proximity. 4) Several genes that play a role in inflammation are expressed specifically in eGFP+ cells. Furthermore, these cells express the entire biosynthesis pathway of leucotriene C4, an eicosanoid involved in modulation of intestinal smooth muscle contraction. 5) Angiotensinogen, renin, and succinate receptor genes are expressed in the eGFP+ cells, suggesting a role in the regulation of water and sodium transport, vasomotricity, and blood pressure. These data suggest that the Trpm5-expressing cells integrate many signals, including chemical signals from ingested food, and that they may regulate several physiological functions of the gastrointestinal tract.
Cinnamon extract is associated to different health benefits but the active ingredients or pathways are unknown. Cinnamaldehyde (CIN) imparts the characteristic flavor to cinnamon and is known to be the main agonist of transient receptor potential-ankyrin receptor 1 (TRPA1). Here, expression of TRPA1 in epithelial mouse stomach cells is described. After receiving a single-dose of CIN, mice significantly reduce cumulative food intake and gastric emptying rates. Co-localization of TRPA1 and ghrelin in enteroendocrine cells of the duodenum is observed both in vivo and in the MGN3-1 cell line, a ghrelin secreting cell model, where incubation with CIN up-regulates expression of TRPA1 and Insulin receptor genes. Ghrelin secreted in the culture medium was quantified following CIN stimulation and we observe that octanoyl and total ghrelin are significantly lower than in control conditions. Additionally, obese mice fed for five weeks with CIN-containing diet significantly reduce their cumulative body weight gain and improve glucose tolerance without detectable modification of insulin secretion. Finally, in adipose tissue up-regulation of genes related to fatty acid oxidation was observed. Taken together, the results confirm anti-hyperglycemic and anti-obesity effects of CIN opening a new approach to investigate how certain spice derived compounds regulate endogenous ghrelin release for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.