Cinnamon extract is associated to different health benefits but the active ingredients or pathways are unknown. Cinnamaldehyde (CIN) imparts the characteristic flavor to cinnamon and is known to be the main agonist of transient receptor potential-ankyrin receptor 1 (TRPA1). Here, expression of TRPA1 in epithelial mouse stomach cells is described. After receiving a single-dose of CIN, mice significantly reduce cumulative food intake and gastric emptying rates. Co-localization of TRPA1 and ghrelin in enteroendocrine cells of the duodenum is observed both in vivo and in the MGN3-1 cell line, a ghrelin secreting cell model, where incubation with CIN up-regulates expression of TRPA1 and Insulin receptor genes. Ghrelin secreted in the culture medium was quantified following CIN stimulation and we observe that octanoyl and total ghrelin are significantly lower than in control conditions. Additionally, obese mice fed for five weeks with CIN-containing diet significantly reduce their cumulative body weight gain and improve glucose tolerance without detectable modification of insulin secretion. Finally, in adipose tissue up-regulation of genes related to fatty acid oxidation was observed. Taken together, the results confirm anti-hyperglycemic and anti-obesity effects of CIN opening a new approach to investigate how certain spice derived compounds regulate endogenous ghrelin release for therapeutic intervention.
Background and purpose: Oily extracts of Sichuan and Melegueta peppers evoke pungent sensations mediated by different alkylamides [mainly hydroxy-a-sanshool (a-SOH)] and hydroxyarylalkanones (6-shogaol and 6-paradol). We assessed how transient receptor potential ankyrin 1 (TRPA1) and TRP vanilloid 1 (TRPV1), two chemosensory ion channels, participate in these pungent sensations. Experimental approach: The structure-activity relationships of these molecules on TRPA1 and TRPV1 was measured by testing natural and synthetic analogues using calcium and voltage imaging on dissociated dorsal root ganglia neurons and human embryonic kidney 293 cells expressing the wild-type channels or specific cysteine mutants using glutathione trapping as a model to probe TRPA1 activation. In addition, using Trpv1 knockout mice, the compounds' aversive responses were measured in a taste brief-access test. Key results: For TRPA1 activation, the cis C6 double bond in the polyenic chain of a-SOH was critical, whereas no structural specificity was required for activation of TRPV1. Both 6-shogaol and 6-paradol were found to activate TRPV1 and TRPA1 channels, whereas linalool, an abundant terpene in Sichuan pepper, activated TRPA1 but not TRPV1 channels. Alkylamides and 6-shogaol act on TRPA1 by covalent bonding whereas none of these compounds activated TRPV1 through such interactions. Finally, TRPV1 mutant mice retained sensitivity to 6-shogaol but were not responsive to a-SOH. Conclusions and implications:The pungent nature of components of Sichuan and Melegueta peppers was mediated via interactions with TRPA1 and TRPV1 channels and may explain the aversive properties of these compounds. (2009) British Journal of Pharmacology
Tight junctions operate as semipermeable barriers in epithelial tissue, separating the apical from the basolateral sides of the cells. Membrane proteins of the claudin family represent the major tight junction constituents, and some reinforce permeability barriers, whereas others create pores based on solute size and ion selectivity. To outline paracellular permeability pathways in gustatory tissue, all claudins expressed in mouse taste buds and in human fungiform papillae have been characterized. Twelve claudins are expressed in murine taste-papillae-enriched tissue, and five of those are expressed in human fungiform papillae. A subset of the claudins expressed in mouse papillae is uniquely found in taste buds. By immunohistochemistry, claudin 4 has been found in mouse taste epithelium, with high abundance around the taste pore. Claudin 6 is explicitly detected inside the pore, claudin 7 was found at the basolateral side of taste cells, and claudin 8 was found around the pore. With the ion permeability features of the different claudins, a highly specific permeability pattern for paracellular diffusion is apparent, which indicates a peripheral mechanism for taste coding.
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked downregulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the ␣␥ENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the  and ␥ ENaC subunits ( Y618A and ␥ Y628A ); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites ( T613A and ␥ T623A ) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P o , wcP o ) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.The amiloride-sensitive epithelial sodium channel (ENaC) 2 is a highly selective Na ϩ channel found in the apical membrane of salt-reabsorbing tight epithelia, including the kidney distal nephron, the distal colon, the salivary and sweat glands, and the lung. ENaC activity is essential for maintaining extracellular fluid volume and blood pressure. The activity of this channel is controlled at two levels: the number of active channels on the cell surface (N) and the channel open probability (P o ) (1). We have also shown that a naturally occurring mutation of the PY motif ( R564stop ), which causes an autosomal dominant form of salt-sensitive hypertension (Liddle syndrome), results in both an increase in N and predominant change in P o (6). Collectively, these data indicate that sgk1-and/or Nedd4-2-dependent mechanisms may control ENaC activity by controlling both the N and P o . Another mechanism known to play an important role in the control of ENaC activity is the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathway. This signaling pathway is thought to have a dual effect on ENaC. The long term (hours/days) activation of this pathway leads to the down-regulation of ENaC activity via inhibition of the transcription rate of ENaC subunits (7,8). The short term (minutes) activation of ERK1/2 also down-re...
In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin‐induced transcript (VIT32) that encodes for a 142 amino acid vasopressin‐induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co‐injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.