From a scientific point of view, it is unquestioned that numerical models for technical systems need to be calibrated. However, in sufficiently calibrated models are still used in engineering practice. Case studies in the scientific literature that deal with urban water management are mostly large cities, while little attention is paid to the differing boundary conditions of smaller municipalities. Consequently, the aim of this paper is to discuss the calibration of a hydrodynamic model of a small municipality (15,000 inhabitants). To represent the spatial distribution of precipitation, three distributed rain gauges were used for model calibration. To show the uncertainties imminent to the calibration process, 17 scenarios, differing in assumptions for calibration, were distinguished. To compare the impact of the different calibration scenarios on actual design values, design rainfall events were applied. The comparison of the model results using the different typical design storm events from all the surrounding data points showed substantial differences for the assessment of the sewers regarding urban flooding, emphasizing the necessity of uncertainty analysis for hydrodynamic models. Furthermore, model calibration is of the utmost importance, because uncalibrated models tend to overestimate flooding volume and therefore result in larger diameters and retention volumes.
Low impact development (LID) strategies aim to mitigate the adverse impacts of urbanization, like the increase of runoff and the decrease of evapotranspiration. Hydrological simulation is a reasonable option to evaluate the LID performance with respect to the complete water balance. The sensitivity of water balance components to LID parameters is important for the modeling and planning process of LIDs. This contribution presents the results of a global sensitivity analysis of model-based water balance components (runoff volume, evapotranspiration, groundwater recharge/storage change) using the US Environmental Protection Agency Storm Water Management Model to the parameters (e.g., soil thickness, porosity) of a green roof, an infiltration trench, and a bio-retention cell. All results are based on long-term simulations. The water balance and sensitivity analyses are evaluated for the long-term as well as single storm events. The identification of non-influential and most influential LID parameters for the water balance components is the main outcome of this work. Additionally, the influence of the storm event characteristics precipitation depth and antecedent dry period on the sensitivity of water balance components to LID parameters is shown.
Urbanization induces an increase of runoff volume and decrease of evapotranspiration and groundwater recharge. Low impact development (LID) strategies aim to mitigate these adverse impacts. Hydrologic simulation is a reasonable option to assess the LID performance with respect to the water balance and is applicable to planning purposes. Current LID design approaches are based on design storm events and focus on the runoff volume and peak, neglecting evapotranspiration and groundwater recharge. This contribution presents a model-based design approach for the selection of cost-effective LID strategies. The method is based on monitored precipitation time series and considers the complete water balance and life-cycle-costs, as well as the demand for land. The efficiency of LID strategies (ELID) is introduced as an evaluation measure which also accounts for emphasizing different goals. The results show that there exist several pareto-optimal LID strategies providing a reasonable basis for decision-making. Additionally, the application of LID treatment trains emerges as an option of high potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.