Physico-chemical models are key for a successful use of lithium-ion batteries, especially under extreme conditions. For correctly simulating of the internal battery states and battery aging a suitable set of material properties is needed. This work presents methods to extract these parameters from commercial cells and demonstrates them analyzing a high-power prismatic cell. In a first step, the electrolyte analysis is described, followed by an examination of the active material. The composition as well as the porous structure are measured using optical emission spectroscopy and Hg-porosimetry. To determine the electrochemical properties of the electrode materials, coin cells with lithium as counter electrode are build. With these test cells, open circuit voltage curves and galvanostatic intermittent titration technique measurements are performed to determine the electrode balancing as well as the diffusion constants of the active material. Electrochemical impedance spectroscopy experiments on the full cell are used to determine the charge transfer. In the second part of this paper, a determination of the thermal parameters as well as a validation for the complete parameterization are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.