We study full Bayesian procedures for high-dimensional linear regression under sparsity constraints. The prior is a mixture of point masses at zero and continuous distributions. Under compatibility conditions on the design matrix, the posterior distribution is shown to contract at the optimal rate for recovery of the unknown sparse vector, and to give optimal prediction of the response vector. It is also shown to select the correct sparse model, or at least the coefficients that are significantly different from zero. The asymptotic shape of the posterior distribution is characterized and employed to the construction and study of credible sets for uncertainty quantification.
Deep neural networks (DNNs) generate much richer function spaces than shallow networks. Since the function spaces induced by shallow networks have several approximation theoretic drawbacks, this explains, however, not necessarily the success of deep networks. In this article we take another route by comparing the expressive power of DNNs with ReLU activation function to linear spline methods. We show that MARS (multivariate adaptive regression splines) is improper learnable by DNNs in the sense that for any given function that can be expressed as a function in MARS with M parameters there exists a multilayer neural network with O(M log(M/ε)) parameters that approximates this function up to sup-norm error ε. We show a similar result for expansions with respect to the Faber-Schauder system. Based on this, we derive risk comparison inequalities that bound the statistical risk of fitting a neural network by the statistical risk of spline-based methods. This shows that deep networks perform better or only slightly worse than the considered spline methods. We provide a constructive proof for the function approximations.
We investigate the problem of deriving posterior concentration rates under different loss functions in nonparametric Bayes. We first provide a lower bound on posterior coverages of shrinking neighbourhoods that relates the metric or loss under which the shrinking neighbourhood is considered, and an intrinsic pre-metric linked to frequentist separation rates. In the Gaussian white noise model, we construct feasible priors based on a spike and slab procedure reminiscent of wavelet thresholding that achieve adaptive rates of contraction under L 2 or L ∞ metrics when the underlying parameter belongs to a collection of Hölder balls and that moreover achieve our lower bound. We analyse the consequences in terms of asymptotic behaviour of posterior credible balls as well as frequentist minimax adaptive estimation. Our results are appended with an upper bound for the contraction rate under an arbitrary loss in a generic regular experiment. The upper bound is attained for certain sieve priors and enables to extend our results to density estimation.
We derive multiscale statistics for deconvolution in order to detect qualitative features of the unknown density. An important example covered within this framework is to test for local monotonicity on all scales simultaneously. We investigate the moderately ill-posed setting, where the Fourier transform of the error density in the deconvolution model is of polynomial decay. For multiscale testing, we consider a calibration, motivated by the modulus of continuity of Brownian motion. We investigate the performance of our results from both the theoretical and simulation based point of view. A major consequence of our work is that the detection of qualitative features of a density in a deconvolution problem is a doable task although the minimax rates for pointwise estimation are very slow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.