This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master's level statistics text, this book will also give researchers an overview of research in asymptotic statistics.
Explosive growth in computing power has made Bayesian methods for infinite-dimensional models - Bayesian nonparametrics - a nearly universal framework for inference, finding practical use in numerous subject areas. Written by leading researchers, this authoritative text draws on theoretical advances of the past twenty years to synthesize all aspects of Bayesian nonparametrics, from prior construction to computation and large sample behavior of posteriors. Because understanding the behavior of posteriors is critical to selecting priors that work, the large sample theory is developed systematically, illustrated by various examples of model and prior combinations. Precise sufficient conditions are given, with complete proofs, that ensure desirable posterior properties and behavior. Each chapter ends with historical notes and numerous exercises to deepen and consolidate the reader's understanding, making the book valuable for both graduate students and researchers in statistics and machine learning, as well as in application areas such as econometrics and biostatistics.
We study full Bayesian procedures for high-dimensional linear regression under sparsity constraints. The prior is a mixture of point masses at zero and continuous distributions. Under compatibility conditions on the design matrix, the posterior distribution is shown to contract at the optimal rate for recovery of the unknown sparse vector, and to give optimal prediction of the response vector. It is also shown to select the correct sparse model, or at least the coefficients that are significantly different from zero. The asymptotic shape of the posterior distribution is characterized and employed to the construction and study of credible sets for uncertainty quantification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.