In this paper, we introduce a new problem in the field of production planning, called the production leveling problem. The task is to assign orders to production periods such that the load in each period and for each product type is balanced, capacity limits are not exceeded, and the orders’ priorities are taken into account. Production leveling is an important intermediate step between long-term planning and the final scheduling of orders within a production period, as it is responsible for selecting good subsets of orders to be scheduled within each period. We provide a formal model of the problem and study its computational complexity. As an exact method for solving moderately sized instances, we introduce a mixed integer programming (MIP) formulation. For solving large problem instances, metaheuristic local search is investigated. A greedy heuristic and two neighborhood structures for local search are proposed in order to apply them using simulated annealing. Furthermore, three possible extensions that arise from the application in practice are described and implemented, both within the MIP model and within simulated annealing. We make publicly available a set of realistic problem instances from the industry as well as from random instance generators. The experimental evaluation on our test sets shows that the proposed MIP model is well suited for solving instances with up to 250 orders. Simulated annealing produces solutions with less than $$3\%$$ 3 % average optimality gap on small instances, and scales well up to thousands of orders and dozens of periods and product types. The metaheuristic method presented herein is already being successfully used in the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.