Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF). KAT6A has essential roles in normal haematopoietic stem cells and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus, a function that requires its KAT activity. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.
Turmeric, a product of Curcuma longa, has a very long history of being used for the treatment of wounds in many Asian countries. Curcumin, the principal curcuminoid of turmeric, has recently been identified as a main mediator of turmeric's medicinal properties. However, the inherent limitations of the compound itself, such as hydrophobicity, instability, poor absorption and rapid systemic elimination, pose big hurdles for translation to wider clinical application. We present here an approach for engineering curcumin/gelatin-blended nanofibrous mats (NMs) by electrospinning to adequately enhance the bioavailability of the hydrophobic curcumin for wound repair. Curcumin was successfully formulated as an amorphous nanosolid dispersion and favorably released from gelatin-based biomimetic NMs that could be easily applied topically to experimental wounds. We show synergistic signaling by the released curcumin during the healing process: (i) mobilization of wound site fibroblasts by activating the Wnt signaling pathway, partly mediated through Dickkopf-related protein-1, and (ii) persistent inhibition of the inflammatory response through decreased expression of monocyte chemoattractant protein-1 by fibroblasts. With a combination of these effects, the curcumin/gelatin-blended NMs enhanced the regenerative process in a rat model of acute wounds, providing a method for translating this ancient medicine for use in modern wound therapy.
Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.