The magnetometer instrument MPO-MAG on-board the Mercury Planetary Orbiter (MPO) of the BepiColombo mission en-route to Mercury is introduced, with its instrument design, its calibration and scientific targets. The instrument is comprised of two tri-axial fluxgate magnetometers mounted on a 2.9 m boom and are 0.8 m apart. They monitor the magnetic field with up to 128 Hz in a $\pm 2048$ ± 2048 nT range. The MPO will be injected into an initial $480 \times 1500$ 480 × 1500 km polar orbit (2.3 h orbital period). At Mercury, we will map the planetary magnetic field and determine the dynamo generated field and constrain the secular variation. In this paper, we also discuss the effect of the instrument calibration on the ability to improve the knowledge on the internal field. Furthermore, the study of induced magnetic fields and field-aligned currents will help to constrain the interior structure in concert with other geophysical instruments. The orbit is also well-suited to study dynamical phenomena at the Hermean magnetopause and magnetospheric cusps. Together with its sister instrument Mio-MGF on-board the second satellite of the BepiColombo mission, the magnetometers at Mercury will study the reaction of the highly dynamic magnetosphere to changes in the solar wind. In the extreme case, the solar wind might even collapse the entire dayside magnetosphere. During cruise, MPO-MAG will contribute to studies of solar wind turbulence and transient phenomena.
In preparation for the ESA/JAXA BepiColombo mission to Mercury, thematic working groups had been established for coordinating the activities within the BepiColombo Science Working Team in specific fields. Here we describe the scientific goals of the Geodesy and Geophysics Working Group (GGWG) that aims at addressing fundamental questions regarding Mercury’s internal structure and evolution. This multidisciplinary investigation will also test the gravity laws by using the planet Mercury as a proof mass. The instruments on the Mercury Planetary Orbiter (MPO), which are devoted to accomplishing the GGWG science objectives, include the BepiColombo Laser Altimeter (BELA), the Mercury orbiter radio science experiment (MORE), and the MPO magnetometer (MPO-MAG). The onboard Italian spring accelerometer (ISA) will greatly aid the orbit reconstruction needed by the gravity investigation and laser altimetry. We report the current knowledge on the geophysics, geodesy, and evolution of Mercury after the successful NASA mission MESSENGER and set the prospects for the BepiColombo science investigations based on the latest findings on Mercury’s interior. The MPO spacecraft of the BepiColombo mission will provide extremely accurate measurements of Mercury’s topography, gravity, and magnetic field, extending and improving MESSENGER data coverage, in particular in the southern hemisphere. Furthermore, the dual-spacecraft configuration of the BepiColombo mission with the Mio spacecraft at higher altitudes than the MPO spacecraft will be fundamental for decoupling the internal and external contributions of Mercury’s magnetic field. Thanks to the synergy between the geophysical instrument suite and to the complementary instruments dedicated to the investigations on Mercury’s surface, composition, and environment, the BepiColombo mission is poised to advance our understanding of the interior and evolution of the innermost planet of the solar system.
Most of the disturbances in space environment can be explained under the framework theory of open magnetosphere and Dungey cycle (Dungey, 1961). This theory is sketched in Figure 1 which is similar to Dungey's original figure. Under southward IMF (SIMF) conditions, magnetic reconnection occurs first at the nose of the magnetopause (Figure 1c) where IMF field lines interconnect with dayside geomagnetic closed field lines. Such reconnection creates a northern set and a southern set of open field lines that consequently convect toward nightside and form into a north-south tail lobe magnetotail configuration (Figures 1a and 1b). Then the northern open field lines interconnect with the southern open field lines in the tail (Figure 1d), creating new closed field lines and new IMF field lines. These two magnetic reconnection processes thus form a Dungey cycle, during which the topology of involved geomagnetic field lines changes from closed to open in dayside and then changes back from open to closed in nightside. This cycle causes solar wind mass and energy to enter into the magnetosphere and the ionosphere, resulting in disturbances such as magnetic storm, substorm, aurora, and so on.
To first order, the magnetopause (MP) is defined by a pressure balance between the solar wind and the magnetosphere. The boundary moves under the influence of varying solar wind conditions and transient foreshock phenomena, reaching unusually large and small distances from the Earth. We investigate under which solar wind conditions such extreme MP distortions occur. Therefore, we construct a database of magnetopause crossings (MPCs) observed by the THEMIS spacecraft in the years 2007 to mid‐2022 using a simple Random Forest Classifier. Roughly 7% of the found crossing events deviate beyond reported errors in the stand‐off distance from the Shue et al. (1998, https://doi.org/10.1029/98JA01103) MP model and thus are termed extreme distortions. We find the occurrence of these extreme events in terms of expansion or compression of the MP to be linked to different solar wind parameters, most notably to the IMF magnitude, cone angle, velocity, Alfvén Mach number and temperature. Foreshock transients like hot‐flow anomalies and foreshock bubbles could be responsible for extreme magnetospheric expansions. The results should be incorporated into future magnetopause models and may be helpful for the reconstruction of the MP locations out of soft x‐ray images, relevant for the upcoming SMILE mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.