The amiloride-insensitive salt taste receptor is the predominant transducer of salt taste in some mammalian species, including humans. The physiological, pharmacological and biochemical properties of the amiloride-insensitive salt taste receptor were investigated by RT-PCR, by the measurement of unilateral apical Na + fluxes in polarized rat fungiform taste receptor cells and by chorda tympani taste nerve recordings. The chorda tympani responses to NaCl, KCl, NH 4 Cl and CaCl 2 were recorded in Sprague-Dawley rats, and in wild-type and vanilloid receptor-1 (VR-1) knockout mice. The chorda tympani responses to mineral salts were monitored in the presence of vanilloids (resiniferatoxin and capsaicin), VR-1 antagonists (capsazepine and SB-366791), and at elevated temperatures. The results indicate that the amiloride-insensitive salt taste receptor is a constitutively active non-selective cation channel derived from the VR-1 gene. It accounts for all of the amiloride-insensitive chorda tympani taste nerve response to Na + salts and part of the response to K + , NH 4 + and Ca 2+ salts. It is activated by vanilloids and temperature (> 38• C), and is inhibited by VR-1 antagonists. In the presence of vanilloids, external pH and ATP lower the temperature threshold of the channel. This allows for increased salt taste sensitivity without an increase in temperature. VR-1 knockout mice demonstrate no functional amiloride-insensitive salt taste receptor and no salt taste sensitivity to vanilloids and temperature. We conclude that the mammalian non-specific salt taste receptor is a VR-1 variant.
An important early event in mammalian gustatory transduction with respect to sodium chloride has been found to be the passage of sodium ions through specific transport pathways in the apical region of the taste bud. The inward current caused by sodium chloride placed on the mucosal surface of an in vitro preparation of rat dorsal lingual epithelium can be substantially reduced by the blocker of sodium ion transport, amiloride. The data show (i) that amiloride is a specific blocker of the chorda tympani response to sodium chloride, but not to potassium chloride, (ii) that the sodium and potassium gustatory systems are largely independent at the peripheral level, and (iii) that the classical ion taste "receptor" is actually a specific transport pathway permitting the cation to enter the taste-bud cell and thereby to spread depolarizing current.
Taste receptor cells (TRCs) respond to acid stimulation, initiating perception of sour taste. Paradoxically, the pH of weak acidic stimuli correlates poorly with the perception of their sourness. A fundamental issue surrounding sour taste reception is the identity of the sour stimulus. We tested the hypothesis that acids induce sour taste perception by penetrating plasma membranes as H(+) ions or as undissociated molecules and decreasing the intracellular pH (pH(i)) of TRCs. Our data suggest that taste nerve responses to weak acids (acetic acid and CO(2)) are independent of stimulus pH but strongly correlate with the intracellular acidification of polarized TRCs. Taste nerve responses to CO(2) were voltage sensitive and were blocked with MK-417, a specific blocker of carbonic anhydrase. Strong acids (HCl) decrease pH(i) in a subset of TRCs that contain a pathway for H(+) entry. Both the apical membrane and the paracellular shunt pathway restrict H(+) entry such that a large decrease in apical pH is translated into a relatively small change in TRC pH(i) within the physiological range. We conclude that a decrease in TRC pH(i) is the proximate stimulus in rat sour taste transduction.
1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na+ to stimulate receptor cells from the submucosal side. Because the submucosal intercellular spaces are nearly isopotential regions, this effect is insensitive to voltage clamp of the TP. The large AIC associated with this anion effect is due to the low permeability of amiloride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.