We explored the effects of aging on 2 large-scale brain networks, the default mode network (DMN) and the task-positive network (TPN). During functional magnetic resonance imaging scanning, young and older participants carried out 4 visual tasks: detection, perceptual matching, attentional cueing, and working memory. Accuracy of performance was roughly matched at 80% across tasks and groups. Modulations of activity across conditions were assessed, as well as functional connectivity of both networks. Younger adults showed a broader engagement of the DMN and older adults a more extensive engagement of the TPN. Functional connectivity in the DMN was reduced in older adults, whereas the main pattern of TPN connectivity was equivalent in the 2 groups. Age-specific connectivity also was seen in TPN regions. Increased activity in TPN areas predicted worse accuracy on the tasks, but greater expression of a connectivity pattern associated with a right dorsolateral prefrontal TPN region, seen only in older adults, predicted better performance. These results provide further evidence for age-related differences in the DMN and new evidence of age differences in the TPN. Increased use of the TPN may reflect greater demand on cognitive control processes in older individuals that may be partially offset by alterations in prefrontal functional connectivity.
Research examining the cognitive consequences of bilingualism has expanded rapidly in recent years and has revealed effects on aspects of cognition across the lifespan. However, these effects are difficult to find in studies investigating young adults. One problem is that there is no standard definition of bilingualism or means of evaluating degree of bilingualism in individual participants, making it difficult to directly compare the results of different studies. Here, we describe an instrument developed to assess degree of bilingualism for young adults who live in diverse communities in which English is the official language. We demonstrate the reliability and validity of the instrument in analyses based on 408 participants. The relevant factors for describing degree of bilingualism are: (1) the extent of non-English language proficiency and use at home, and (2) non-English language use socially. We then use the bilingualism scores obtained from the instrument to demonstrate their association with: (1) performance on executive function tasks, and (2) previous classifications of participants into categories of monolinguals and bilinguals.
Here we review the neural correlates of cognitive control associated with bilingualism. We demonstrate that lifelong practice managing two languages orchestrates global changes to both the structure and function of the brain. Compared with monolinguals, bilinguals generally show greater gray matter volume, especially in perceptual/motor regions, greater white matter integrity, and greater functional connectivity between gray matter regions. These changes complement electroencephalography findings showing that bilinguals devote neural resources earlier than monolinguals. Parallel functional findings emerge from the functional magnetic resonance imaging literature: bilinguals show reduced frontal activity, suggesting that they do not need to rely on top-down mechanisms to the same extent as monolinguals. This shift for bilinguals to rely more on subcortical/posterior regions, which we term the bilingual anterior-to-posterior and subcortical shift (BAPSS), fits with results from cognitive aging studies and helps to explain why bilinguals experience cognitive decline at later stages of development than monolinguals.
1AbstractTo extract patterns from neuroimaging data, various statistical methods and machine learning algorithms have been explored for the diagnosis of Alzheimer’s disease among older adults in both clinical and research applications; however, distinguishing between Alzheimer’s and healthy brain data has been challenging in older adults (age > 75) due to highly similar patterns of brain atrophy and image intensities. Recently, cutting-edge deep learning technologies have rapidly expanded into numerous fields, including medical image analysis. This paper outlines state-of-the-art deep learning-based pipelines employed to distinguish Alzheimer’s magnetic resonance imaging (MRI) and functional MRI (fMRI) from normal healthy control data for a given age group. Using these pipelines, which were executed on a GPU-based high-performance computing platform, the data were strictly and carefully preprocessed. Next, scale- and shift-invariant low- to high-level features were obtained from a high volume of training images using convolutional neural network (CNN) architecture. In this study, fMRI data were used for the first time in deep learning applications for the purposes of medical image analysis and Alzheimer’s disease prediction. These proposed and implemented pipelines, which demonstrate a significant improvement in classification output over other studies, resulted in high and reproducible accuracy rates of 99.9% and 98.84% for the fMRI and MRI pipelines, respectively. Additionally, for clinical purposes, subject-level classification was performed, resulting in an average accuracy rate of 94.32% and 97.88% for the fMRI and MRI pipelines, respectively. Finally, a decision making algorithm designed for the subject-level classification improved the rate to 97.77% for fMRI and 100% for MRI pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.