Water suppression is typically performed in vivo by exciting the longitudinal magnetization in combination with dephasing, or by using frequency-selective coherence generation. MEGA, a frequency-selective refocusing technique, can be placed into any pulse sequence element designed to generate a Hahn spin-echo or stimulated echo, to dephase transverse water coherences with minimal spectral distortions. Water suppression performance was verified in vivo using stimulated echo acquisition mode (STEAM) localization, which provided water suppression comparable with that achieved with four selective pulses in 3,1-DRYSTEAM. The advantage of the proposed method was exploited for editing J-coupled resonances. Using a double-banded pulse that selectively inverts a J-coupling partner and simultaneously suppresses water, efficient metabolite editing was achieved in the point resolved spectroscopy (PRESS) and STEAM sequences in which MEGA was incorporated. To illustrate the efficiency of the method, the detection of g-aminobutyric acid (GABA) was demonstrated, with minimal contributions from macromolecules and overlying singlet peaks at 4 T. The estimated occipital GABA concentration was consistent with previous reports, suggesting that editing for GABA is efficient when based on MEGA at high field strengths.
We review past DNA-hybridisation studies of marsupials and present a reanalysis of the data, utilising results from our and additional studies to formulate and rationalise a new classification of Marsupialia. In the reanalysis, 13 individual DNA-hybridisation matrices, many lacking some pairwise comparisons, were sutured in stages to provide the basis for generating a tree of 101 marsupials plus an outgroup eutherian; a fourteenth matrix provided data for a tree including eight additional eutherians and a monotreme. Validation was achieved by jackknifing on taxa for each matrix as well as on tables combining two or more matrices generated during assembly of the 102-taxon data set. The results are consistent with most conclusions from the individual studies and dramatise the unevenness of hierarchical levels in current classifications of marsupials. In particular, the affinities of the American marsupial Dromiciops gliroides with, and the distinctness of marsupial bandicoots from, Australasian metatherians are reaffirmed, while opossums are shown to be as internally divergent as are most members of the order Diprotodontia. Calibration of the 102-taxon tree and dating of the major dichotomies suggest that no extant marsupial lineage originated before the latest Cretaceous, and that all of them together with most South American and all Australasian fossils should be recognised as a monophyletic group contrasting with a largely Laurasian (if possibly paraphyletic) taxon. These inferences, together with the details of the phylogeny, mandate that the misleading ‘Australian’ v. ‘American’ distinction be abandoned, even as a geographic convenience.
Parathyroid localization is indicated in surgical candidates. Crucial considerations when selecting an imaging study include availability, cost, radiation exposure, local expertise, and accuracy. Additional factors include the patient's anticipated pathology and whether it is de novo or refractory disease. An approach to imaging for patients with primary hyperparathyroidism is presented.
Variations in total brain mass and in the mass of three brain regions (main olfactory bulb, hippocampus, auditory nuclei) were examined using a data set for 63 species of bats (Chiroptera). Using both conventional and phylogenetically based analysis of covariance (log body mass as covariate), we tested several hypotheses that relate total brain mass or the size of the components to variation in foraging ecology, categorized as phytophagous, gleaner, and aerial insectivore. In some analyses, the category phytophagous was split into phytophagous pteropodid and phytophagous phyllostomid to examine differences between two distinct clades of bats. Because the Megachiroptera orient primarily by vision and olfaction, whereas all other bats rely on laryngeal echolocation to locate their prey, we hypothesized that the former would differ in size of the main olfactory bulb, as compared with all other bats. This hypothesis was supported by our analyses. Our more general prediction was that insectivorous bats, which rely heavily on echolocation for the pursuit and capture of their prey, would have larger auditory nuclei than do phytophagous species. This, too, was supported. We also compared phytophagous (fruit or nectar consuming) bats in two families, the Pteropodidae and the Phyllostomidae. We hypothesized that the phyllostomids, which use echolocation while foraging, would have larger auditory nuclei. Although statistical power is low in phylogenetically informed comparisons of the two clades, we did find weak evidence in support of this hypothesis. We conclude that bat brains show evidence of adaptation to foraging ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.