Research from the world's oceans. rsmas.miami.edu/bms Bulletin of Marine Science rsmas.miami.edu/bms
Guest Editor ManualThe Bulletin of Marine Science Guest Editor Manual is intended for use with proper authorization by all persons serving as guest editors of special issues, special sections, and other publications coordinated and published by the Bulletin of Marine Science.
Characterizing spatio-temporal variation in the density of organisms in a community is a crucial part of ecological study. However, doing so for small, motile, cryptic species presents multiple challenges, especially where multiple life history stages are involved. Gnathiid isopods are ecologically important marine ectoparasites, micropredators that live in substrate for most of their lives, emerging only once during each juvenile stage to feed on fish blood. Many gnathiid species are nocturnal and most have distinct substrate preferences. Studies of gnathiid use of habitat, exploitation of hosts, and population dynamics have used various trap designs to estimate rates of gnathiid emergence, study sensory ecology, and identify host susceptibility. In the studies reported here, we compare and contrast the performance of emergence, fish-baited and light trap designs, outline the key features of these traps, and determine some life cycle parameters derived from trap counts for the Eastern Caribbean coral-reef gnathiid, Gnathia marleyi. We also used counts from large emergence traps and light traps to estimate additional life cycle parameters, emergence rates, and total gnathiid density on substrate, and to calibrate the light trap design to provide estimates of rate of emergence and total gnathiid density in habitat not amenable to emergence trap deployment.
Ecosystem degradation due to anthropogenic activities is the primary issue of our times. Theoretical analyses as well as efforts to restore and manage ecosystems depend on comprehensive metrics of ecosystem function. In the case of complex ecosystems such as tropical coral reefs-especially where monitoring, management, and restoration are important-multiple metrics reflecting key functional groups are required to accurately reflect ecosystem function and when necessary, diagnose degree and kind of ecosystem degradation. We propose inclusion of the generalist ectoparasite functional group as a measure of ecosystem function of coral reefs. This functional group is adaptable to loss of other community members and may experience an increase in abundance as ecosystem function declines. Fish-parasitic gnathiid isopods are a member of this group, resident though inconspicuous in coral-reef communities. On Caribbean coral reefs, based on 938 light-trap samples, we observed a negative correlation between abundance of smallersized gnathiids and abundance of live coral, a natural predator of gnathiids. Plots grouped by coral cover-a measure of success of the ecosystem engineer-and ectoparasite abundance varied significantly in community composition including abundance of macroalgae, turf algae, and farming Stegastes spp. damselfish reflecting shifts in community structure. Changes in gnathiid abundance with respect to the abundance of organisms participating in each of the core functional processes driving coral-reef ecosystems reflect broad connectivity of gnathiid parasites across the ecosystem. We conclude that the hyperabundance of a small, cryptic, generalist parasite, when used in combination with a metric of abundance of the primary ecosystem engineer, can provide one nuanced measure of the ecosystem vulnerability to collapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.