Lymphocytes travel throughout the body to carry out immune surveillance and participate in inflammatory reactions. Their path takes them from blood through tissues into lymph and back to blood. Molecules that control lymphocyte recruitment into extralymphoid tissues are well characterized, but exit is assumed to be random. Here, we showed that lymphocyte emigration from the skin was regulated and was sensitive to pertussis toxin. CD4(+) lymphocytes emigrated more efficiently than CD8(+) or B lymphocytes. T lymphocytes in the afferent lymph expressed functional chemokine receptor CCR7, and CCR7 was required for T lymphocyte exit from the skin. The regulated expression of CCR7 by tissue T lymphocytes may control their exit, acting with recruitment mechanisms to regulate lymphocyte transit and accumulation during immune surveillance and inflammation.
Memory/effector T cells traffic efficiently through extralymphoid tissues, entering from the blood and leaving via the afferent lymph. During inflammation, T cell traffic into the affected tissue dramatically increases; however, the dynamics and mechanisms of T cell exit from inflamed tissues are poorly characterized. Here we show, using both a mouse and a sheep model, that large numbers of lymphocytes leave the chronically inflamed skin. Many T cells capable of producing IFN-γ and IL-17 also entered the draining afferent lymph, demonstrating that memory/effector T cells egress from sites of inflammation. Whereas efficient egress from acutely inflamed skin required lymphocyte-expressed CCR7, chronic inflammation promoted significant CCR7-independent exit as well. Lymphocyte exit at late time points of inflammation was sensitive to pertussis toxin but only partially affected by the drug FTY720, implying the contribution of alternative chemoattractant receptors other than S1P1. Our data show that CCR7 is an important receptor for lymphocyte egress from both resting and inflamed extralymphoid tissues, but that alternative exit receptors come into play during chronic inflammation.
B cells infiltrate the skin in many chronic inflammatory diseases caused by autoimmunity or infection. Despite potential contribution to disease, skin-associated B cells remain poorly characterized. Using an ovine model of granulomatous skin inflammation, we demonstrate that B cells increase in the skin and skin-draining afferent lymph during inflammation. Surprisingly, skin B cells are a heterogeneous population that is distinct from lymph node B cells, with more large lymphocytes as well as B-1-like B cells that co-express high levels IgM and CD11b. Skin B cells have increased MHCII, CD1, and CD80/86 expression compared with lymph node B cells, suggesting that they are well-suited for T cell activation at the site of inflammation. Furthermore, we show that skin accumulation of B cells and antibody-secreting cells during inflammation increases local antibody titers, which could augment host defense and autoimmunity. While skin B cells express typical skin homing receptors such as E-selectin ligand and alpha-4 and beta-1 integrins, they are unresponsive to ligands for chemokine receptors associated with T cell homing into skin. Instead, skin B cells migrate toward the cutaneously expressed CCR6 ligand CCL20. Our data support a model in which B cells use CCR6-CCL20 to recirculate through the skin, fulfilling a novel role in skin immunity and inflammation.
We investigated lymphatic drainage pathways of the central nervous system in conscious sheep and quantified the clearance of a cerebrospinal fluid (CSF) tracer into lymph and blood. In the first group of studies, 125I-HSA was injected into the lateral ventricles of the brain or into lumbar CSF and after 6 h, various lymph nodes and tissues were excised and counted for radioactivity. Multiple lymphatic drainage pathways of cranial CSF existed in the head and neck region defined by elevated 125I-HSA in the retropharyngeal/cervical, thymic, pre-auricular and submandibular nodes. Implicated in spinal CSF drainage were mainly the lumbar and intercostal nodes. In a second group of experiments, multiple cervical vessels and the thoracic duct were cannulated and lymph diverted from the animals. Transport of tracer through arachnoid villi was taken from recoveries in venous blood. Following intraventricular administration, the 6 h recoveries of 125I-HSA in the lymph (sum of cervical and thoracic duct) and blood were 8.2% +/- 3.0 and 12.5% +/- 4.5 respectively and at 22 h, 25.1% +/- 6.9 and 20.8% +/- 4.1 respectively. When 125I-HSA was injected into lumbar CSF, the 6 h recoveries of tracer in thoracic duct and blood were 11.6% +/- 2.7 and 16.3% +/- 3.7 respectively. Total lymph and blood recoveries were not significantly different in any experiment. We conclude that the clearance of 125I-HSA from the CSF is almost equally distributed between lymphatic and arachnoid villi pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.