This paper presents a fuzzy modeling approach for identification of dynamic systems. In particular, a new fuzzy model, the Dynamic Fuzzy Neural Network (DFNN), consisting of recurrent TSK rules, is developed. The premise and defuzzification parts are static while the consequent parts of the fuzzy rules are recurrent neural networks with internal feedback and time delay synapses. The network is trained by means of a novel learning algorithm, named Dynamic-Fuzzy Neural Constrained Optimization Method (D-FUNCOM), based on the concept of constrained optimization. The proposed algorithm is general since it can be applied to locally as well as fully recurrent networks, regardless of their structures. An adaptation mechanism of the maximum parameter change is presented as well. The proposed dynamic model, equipped with the learning algorithm, is applied to several temporal problems, including modeling of a NARMA process and the noise cancellation problem. Performance comparisons are conducted with a series of static and dynamic systems and some existing recurrent fuzzy models. Simulation results show that DFNN compares favorably with its competing rivals and thus it can be considered for efficient system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.