This paper presents a fuzzy modeling approach for identification of dynamic systems. In particular, a new fuzzy model, the Dynamic Fuzzy Neural Network (DFNN), consisting of recurrent TSK rules, is developed. The premise and defuzzification parts are static while the consequent parts of the fuzzy rules are recurrent neural networks with internal feedback and time delay synapses. The network is trained by means of a novel learning algorithm, named Dynamic-Fuzzy Neural Constrained Optimization Method (D-FUNCOM), based on the concept of constrained optimization. The proposed algorithm is general since it can be applied to locally as well as fully recurrent networks, regardless of their structures. An adaptation mechanism of the maximum parameter change is presented as well. The proposed dynamic model, equipped with the learning algorithm, is applied to several temporal problems, including modeling of a NARMA process and the noise cancellation problem. Performance comparisons are conducted with a series of static and dynamic systems and some existing recurrent fuzzy models. Simulation results show that DFNN compares favorably with its competing rivals and thus it can be considered for efficient system identification.
A novel learning algorithm, the Recurrent Neural Network Constrained Optimization Method (RENNCOM) is suggested in this paper, for training block-diagonal recurrent neural networks. The training task is formulated as a constrained optimization problem, whose objective is twofold: (1) minimization of an error measure, leading to successful approximation of the input/output mapping and (2) optimization of an additional functional, the payoff function, which aims at ensuring network stability throughout the learning process. Having assured the network and training stability conditions, the payoff function is switched to an alternative form with the scope to accelerate learning. Simulation results on a benchmark identification problem demonstrate that, compared to other learning schemes with stabilizing attributes, the RENNCOM algorithm has enhanced qualities, including, improved speed of convergence, accuracy and robustness. The proposed algorithm is also applied to the problem of the analysis of lung sounds. Particularly, a filter based on block-diagonal recurrent neural networks is developed, trained with the RENNCOM method. Extensive experimental results are given and performance comparisons with a series of other models are conducted, underlining the effectiveness of the proposed filter.
A fuzzy modeling method is developed in this paper for short term load forecasting. According to this method, identification of the premise part and consequent part is separately accomplished via the Orthogonal Least Squares (OLS) technique. Particularly, the OLS is first employed to partition the input space and determine the number of fuzzy rules and the premise parameters. In the sequel, a second orthogonal estimator determines the input terms which should be included in the consequent part of each fuzzy rule and calculate its parameters. Input selection is automatically performed, given an input candidate set of arbitrary size, formulated by an expert. A satisfactory prediction performance is attained as shown in the test results, showing the effectiveness of the suggested method.
Pathological discontinuous adventitious sounds (DAS) are strongly related with the pulmonary dysfunction. Its clinical use for the interpretation of respiratory malfunction depends on their efficient and objective separation from vesicular sounds (VS). In this paper, an automated approach to the isolation of DAS from VS, based on their nonstationarity, is presented. The proposed scheme uses two fuzzy inference systems (FISs), operating in parallel, to perform the task of adaptive separation, resulting in the orthogonal least squares-based fuzzy filter (OLS-FF). By applying the OLS-FF to fine/coarse crackles and squawks, selected from three lung sound databases, the coherent structure of DAS is revealed and they are efficiently separated from VS. The important time domain DAS features, related to diagnostic information, are preserved and their true location and structural morphology are automatically identified. When compared to previous works, the OLS-FF performs quite similarly, but with significantly lower computational load, resulting in a faster real-time clinical screening of DAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.