Few studies have examined systematic relationships of right whales (Eubalaena spp.) since the original species descriptions, even though they are one of the most endangered large whales. Little morphological evidence exists to support the current species designations for Eubalaena glacialis in the northern hemisphere and E. australis in the southern hemisphere. Differences in migratory behaviour or antitropical distribution between right whales in each hemisphere are considered a barrier to gene flow and maintain the current species distinctions and geographical populations. However, these distinctions between populations have remained controversial and no study has included an analysis of all right whales from the three major ocean basins. To address issues of genetic differentiation and relationships among right whales, we have compiled a database of mitochondrial DNA control region sequences from right whales representing populations in all three ocean basins that consist of: western North Atlantic E. glacialis, multiple geographically distributed populations of E. australis and the first molecular analysis of historical and recent samples of E. glacialis from the western and eastern North Pacific Ocean. Diagnostic characters, as well as phylogenetic and phylogeographic analyses, support the possibility that three distinct maternal lineages exist in right whales, with North Pacific E. glacialis being more closely related to E. australis than to North Atlantic E. glacialis. Our genetic results provide unequivocal character support for the two usually recognized species and a third distinct genetic lineage in the North Pacific under the Phylogenetic Species Concept, as well as levels of genetic diversity among right whales world-wide.
The genetic structure of humpback whale populations and subpopulation divisions is described by restriction fragment length analysis of the mitochondrial (mt) DNA from samples of 230 whales collected by biopsy darting in 11 seasonal habitats representing six subpopulations, or 'stocks', world-wide. The hierarchical structure of mtDNA haplotype diversity among population subdivisions is described using the analysis of molecular variance (AMOVA) procedure, the analysis of gene identity, and the genealogical relationship of haplotypes as constructed by parsimony analysis and distance clustering. These analyses revealed: (i) significant partitioning of world-wide genetic variation among oceanic populations, among subpopulations or 'stocks' within oceanic populations and among seasonal habitats within stocks; (ii) fixed categorical segregation of haplotypes on the south-eastern Alaska and central California feeding grounds of the North Pacific; (iii) support for the division of the North Pacific population into a central stock which feeds in Alaska and winters in Hawaii, and an eastern or 'American' stock which feeds along the coast of California and winters near Mexico; (iv) evidence of genetic heterogeneity within the Gulf of Maine feeding grounds and among the sampled feeding and breeding grounds of the western North Atlantic; and (v) support for the historical division between the Group IV (Western Australia) and Group V (eastern Australia, New Zealand and Tonga) stocks in the Southern Oceans. Overall, our results demonstrate a striking degree of genetic structure both within and between oceanic populations of humpback whales, despite the nearly unlimited migratory potential of this species. We suggest that the humpback whale is a suitable demographic and genetic model for the management of less tractable species of baleen whales and for the general study of gene flow among long-lived, mobile vertebrates in the marine ecosystem.
During the last 2 centuries, southern right whales Eubalaena australis were hunted to near extinction, and an estimated 150 000 were killed by pre-industrial whaling in the 19th century and illegal Soviet whaling in the 20th century. Here we focus on the coastal calving grounds of Australia and New Zealand (NZ), where previous work suggests 2 genetically distinct stocks of southern right whales are recovering. Historical migration patterns and spatially variable patterns of recovery suggest each of these stocks are subdivided into 2 stocks: (1) NZ, comprising NZ subantarctic (NZSA) and mainland NZ (MNZ) stocks; and (2) Australia, comprising southwest and southeast stocks. We expand upon previous work to investigate population subdivision by analysing over 1000 samples collected at 6 locations across NZ and Australia, although sample sizes were small from some locations. Mitochondrial DNA (mtDNA) control region haplotypes (500 bp) and microsatellite genotypes (13 loci) were used to identify 707 individual whales and to test for genetic differentiation. For the first time, we documented the movement of 7 individual whales between the NZSA and MNZ based on the matching of multilocus genotypes. Given the current and historical evidence, we hypothesise that individuals from the NZ subantarctic are slowly recolonising MNZ, where a former calving ground was extirpated. We also suggest that southeast Australian right whales represent a remnant stock, distinct from the southwest Australian stock, based on significant differentiation in mtDNA haplotype frequencies (F ST = 0.15, p < 0.01; Φ ST = 0.12, p = 0.02) and contrasting patterns of recovery. In comparison with significant differences in mtDNA haplotype frequencies found between the 3 proposed stocks (overall F ST = 0.07, Φ ST = 0.12, p < 0.001), we found no significant differentiation in microsatellite loci (overall
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.