[1] AIRS was launched on EOS Aqua on 4 May 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an RMS error of 1 K, and layer precipitable water with an RMS error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the atlaunch algorithm, was described previously. Prelaunch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lowertropospheric temperature retrieved with 80% cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently, HSB channel radiances are
The Atmospheric Infrared Sounder (AIRS), the hyperspectral infrared sounder on the NASA Aqua mission, both improves operational weather prediction and provides high-quality research data for climate studies. The Atmospheric Infrared Sounder (AIRS), and its two companion microwave instruments, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), form the integrated atmospheric sounding system flying on the Earth Observing System (EOS) Aqua spacecraft since its launch in May 2002.1 The primary scientific achievement of AIRS has been to improve weather prediction (Le Marshall et al. 2005a,b,c) and to study the water and energy cycle (Tian et al. 2006). AIRS also provides information on several greenhouse gases. The measurement goal of AIRS is the retrieval of temperature and precipitable-water vapor profiles with accuracies approaching those of conventional radiosondes. In the following text we use the terms AIRS and AIRS-AMSU-HSB interchangeably.1 The HSB ceased functioning after 5 February 2003. This did not have an impact on the accuracy, coverage, or resolution of the AIRS core data product, but its loss has had a significant impact on AIRS research products.A comprehensive set of articles on AIRS and AMSU design details, prelaunch calibration, and prelaunch retrieval performance expectations were published in a special issue of IEEE Transactions on Geoscience and Remote Sensing (2003, vol. 41, no. 2). This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.