Collision cross section (CCS) measurements resulting from ion mobility – mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (DTCCSN2) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these DTCCSN2 values are evaluated across three additional laboratories on a commercially-available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field DTCCSN2 values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.
Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values ( K 0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E / N ; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method‐dependent results) only if the gas nature, temperature or E / N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
A combined data acquisition and data processing strategy for improving the sensitivity and resolution of ion mobility measurements is described. This strategy is implemented on a commercially available drift tube ion mobility-mass spectrometry (IM-MS) instrument and utilizes both an existing ion multiplexing strategy to achieve up to an 8-fold gain in ion signal and a new postacquisition data reconstruction technique, termed “high resolution demultiplexing” (HRdm), to improve resolution in the ion mobility dimension. A series of isomeric mixtures were qualitatively investigated with HRdm, including biologically relevant lipids and carbohydrates, which were successfully resolved by HRdm, including two monosaccharide regioisomers which differed in drift time by only 0.8%. For a complex trisaccharide isomer mixture, HRdm was able to resolve 5 out of 6 components. An analysis of two-peak resolution (R pp) and peak-to-peak separation (ΔP) indicated that HRdm performs with an effective resolving power (R p) of between 180 to 250 for the highest deconvolution settings. Overall analysis times and drift time measurement precision were found to be unaffected between standard and HRdm processed data sets, which allowed statistically identical collision cross section values to be directly determined from all ion mobility spectra.
A recently developed uniform-field high resolution ion mobility (IM) quadrupole time of flight (Q-TOF) mass spectrometer is used for evaluating the utility of alternate drift gases for complex sample analyses. This study provides collision cross section comparison for 275 total pesticides including structural isomers in nitrogen, helium, carbon dioxide, nitrous oxide and sulfur hexafluoride drift gases. Furthermore, a set of small molecules and Agilent tune mix compounds were used to study the trends in experimentally derived collision cross section values in argon and the alternate drift gases. Two isomeric trisaccharides, melezitose and raffinose, were used to evaluate the effect of the drift gasses for mobility separation. The hybrid ion mobility Q-TOF mass analyzer used in this study consists of a low pressure uniform field drift tube apparatus coupled to a high resolution Q-TOF mass spectrometer. Conventionally, low pressure ion mobility instruments are operated using helium drift gas to obtain optimal structural information and collision cross-section (CCS) values that compare to theoretical CCS values. The instrument employed in this study uses nitrogen as the standard drift gas but also allows the utility of alternate drift gases for improved structural analysis and selectivity under certain conditions. The use of alternate drift gases with a wide range of polarizabilities allows the evaluation of mobility separation power in terms of induced dipole interactions between the drift gas and the analyte ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.